RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2015, Volume 79, Issue 5, Pages 239–248 (Mi izv8284)  

This article is cited in 3 scientific papers (total in 3 papers)

Browder functions and theorems on fixed points and coincidences

T. N. Fomenko

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: We introduce the notion of a functional subject to a function series, the notion of a Browder function, and also the notion of a functional subject to a Browder function. We prove theorems on the search for zeros of these functionals. On the basis of this, we obtain a development, for set-valued maps, of Browder's well-known fixed-point theorem and also prove theorems on common pre-images and coincidences of maps of metric spaces which generalize some known results.

Keywords: Browder's theorem, Browder function, search for zeros of a functional, fixed point, coincidence point.

DOI: https://doi.org/10.4213/im8284

Full text: PDF file (400 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2015, 79:5, 1087–1095

Bibliographic databases:

UDC: 515.124+515.126.4+517.938.5
MSC: Primary 47H10; Secondary 40A05, 49M25, 54H25, 55M20
Received: 14.08.2014

Citation: T. N. Fomenko, “Browder functions and theorems on fixed points and coincidences”, Izv. RAN. Ser. Mat., 79:5 (2015), 239–248; Izv. Math., 79:5 (2015), 1087–1095

Citation in format AMSBIB
\Bibitem{Fom15}
\by T.~N.~Fomenko
\paper Browder functions and theorems on fixed points and coincidences
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 5
\pages 239--248
\mathnet{http://mi.mathnet.ru/izv8284}
\crossref{https://doi.org/10.4213/im8284}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438462}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79.1087F}
\elib{https://elibrary.ru/item.asp?id=24849998}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 5
\pages 1087--1095
\crossref{https://doi.org/10.1070/IM2015v079n05ABEH002773}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000367372500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948394317}


Linking options:
  • http://mi.mathnet.ru/eng/izv8284
  • https://doi.org/10.4213/im8284
  • http://mi.mathnet.ru/eng/izv/v79/i5/p239

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. N. Fomenko, “Fixed points and coincidences of families of mappings between ordered sets and some metrical consequences”, Izv. Math., 83:1 (2019), 151–172  mathnet  crossref  crossref  adsnasa  isi  elib
    2. Fomenko T., Podoprikhin D., “On Preservation of Common Fixed Points and Coincidences Under a Homotopy of Mapping Families of Ordered Sets”, J. Optim. Theory Appl., 180:1, SI (2019), 34–47  crossref  mathscinet  zmath  isi
    3. T. N. Fomenko, K. S. Yastrebov, “Method for searching zeros of functionals in a conical metric space and questions of its stability”, Moscow University Mathematics Bulletin volume, 75:2 (2020), 58–64  mathnet  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:350
    Full text:82
    References:47
    First page:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020