RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 1, Pages 281–304 (Mi izv8307)  

This article is cited in 3 scientific papers (total in 3 papers)

Newton polytopes and irreducible components of complete intersections

A. G. Khovanskiiab

a Independent University of Moscow
b Department of Mathematics, University of Toronto

Abstract: We calculate the number of irreducible components of varieties in $(\mathbb C^*)^n$ determined by generic systems of equations with given Newton polytopes. Every such component can in its turn be given by a generic system of equations whose Newton polytopes are found explicitly. It is known that many discrete invariants of a variety can be found in terms of the Newton polytopes. Our results enable one to calculate such invariants for each irreducible component of the variety.

Keywords: Newton polytopes, mixed volume, irreducible components, holomorphic forms.

Funding Agency Grant Number
Agence Nationale de la Recherche ANR-08-BLAN-0317-01
ANR-13-IS01-0001-01
This paper was written with the support of the grants ANR-08-BLAN-0317-01 and ANR-13-IS01-0001-01 of the National Research Agency.


DOI: https://doi.org/10.4213/im8307

Full text: PDF file (685 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:1, 263–284

Bibliographic databases:

UDC: 515.165.4
MSC: 14M25, 13P15, 52A39, 52B20, 32Q55
Received: 09.10.2014
Revised: 25.02.2015

Citation: A. G. Khovanskii, “Newton polytopes and irreducible components of complete intersections”, Izv. RAN. Ser. Mat., 80:1 (2016), 281–304; Izv. Math., 80:1 (2016), 263–284

Citation in format AMSBIB
\Bibitem{Kho16}
\by A.~G.~Khovanskii
\paper Newton polytopes and irreducible components of complete intersections
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 1
\pages 281--304
\mathnet{http://mi.mathnet.ru/izv8307}
\crossref{https://doi.org/10.4213/im8307}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462682}
\zmath{https://zbmath.org/?q=an:06589641}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..263K}
\elib{http://elibrary.ru/item.asp?id=25707532}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 1
\pages 263--284
\crossref{https://doi.org/10.1070/IM8307}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000375460600008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969195357}


Linking options:
  • http://mi.mathnet.ru/eng/izv8307
  • https://doi.org/10.4213/im8307
  • http://mi.mathnet.ru/eng/izv/v80/i1/p281

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Kaveh, A. Khovanskii, “Complete intersections in spherical varieties”, Selecta Mathematica-New Series, 22:4 (2016), 2099–2141  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. A. Martynyuk, “Comparison principle based on Minkowski mixed volumes for a family of differential equations”, Differ. Equ., 53:12 (2017), 1549–1556  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    3. Esterov A., “Galois Theory For General Systems of Polynomial Equations”, Compos. Math., 155:2 (2019), 229–245  crossref  mathscinet  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:426
    Full text:53
    References:89
    First page:93

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019