Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 4, Pages 163–184 (Mi izv8334)  

This article is cited in 3 scientific papers (total in 3 papers)

Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$

V. A. Vassiliev

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We calculate the rational homology groups of spaces of non-resultant (that is, having no non-trivial common zeros) systems of homogeneous quadratic polynomials in $\mathbb R^3$.

Keywords: resultant, cohomology, simplicial resolution, configuration space.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/im8334

Full text: PDF file (658 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:4, 791–810

Bibliographic databases:

ArXiv: 1412.8194
UDC: 515.164+512.73
MSC: 14P25
Received: 28.12.2014
Revised: 14.10.2015

Citation: V. A. Vassiliev, “Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$”, Izv. RAN. Ser. Mat., 80:4 (2016), 163–184; Izv. Math., 80:4 (2016), 791–810

Citation in format AMSBIB
\Bibitem{Vas16}
\by V.~A.~Vassiliev
\paper Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 4
\pages 163--184
\mathnet{http://mi.mathnet.ru/izv8334}
\crossref{https://doi.org/10.4213/im8334}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3535362}
\zmath{https://zbmath.org/?q=an:06640631}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..791V}
\elib{https://elibrary.ru/item.asp?id=26414241}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 4
\pages 791--810
\crossref{https://doi.org/10.1070/IM8334}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000384882700008}
\elib{https://elibrary.ru/item.asp?id=27575754}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987624643}


Linking options:
  • http://mi.mathnet.ru/eng/izv8334
  • https://doi.org/10.4213/im8334
  • http://mi.mathnet.ru/eng/izv/v80/i4/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Vassiliev, “Stable cohomology of spaces of non-resultant polynomial systems in $\mathbb R^3$”, Dokl. Math., 96:3 (2017), 616–619  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. A. Vassiliev, “Stable cohomology of spaces of non-resultant systems of homogeneous polynomials in $\mathbb R^n$”, Dokl. Math., 98:1 (2018), 330–333  mathnet  crossref  crossref  zmath  isi  elib  scopus
    3. V. A. Vassiliev, “Twisted homology of configuration spaces and homology of spaces of equivariant maps”, Dokl. Math., 98:3 (2018), 629–633  mathnet  crossref  zmath  isi  elib  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:358
    Full text:26
    References:27
    First page:27

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021