RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 4, Pages 163–184 (Mi izv8334)  

This article is cited in 2 scientific papers (total in 2 papers)

Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$

V. A. Vassiliev

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We calculate the rational homology groups of spaces of non-resultant (that is, having no non-trivial common zeros) systems of homogeneous quadratic polynomials in $\mathbb R^3$.

Keywords: resultant, cohomology, simplicial resolution, configuration space.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/im8334

Full text: PDF file (658 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:4, 791–810

Bibliographic databases:

ArXiv: 1412.8194
Document Type: Article
UDC: 515.164+512.73
MSC: 14P25
Received: 28.12.2014
Revised: 14.10.2015

Citation: V. A. Vassiliev, “Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$”, Izv. RAN. Ser. Mat., 80:4 (2016), 163–184; Izv. Math., 80:4 (2016), 791–810

Citation in format AMSBIB
\Bibitem{Vas16}
\by V.~A.~Vassiliev
\paper Homology groups of spaces of non-resultant quadratic polynomial systems in ${\mathbb R}^3$
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 4
\pages 163--184
\mathnet{http://mi.mathnet.ru/izv8334}
\crossref{https://doi.org/10.4213/im8334}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3535362}
\zmath{https://zbmath.org/?q=an:06640631}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..791V}
\elib{http://elibrary.ru/item.asp?id=26414241}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 4
\pages 791--810
\crossref{https://doi.org/10.1070/IM8334}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000384882700008}
\elib{http://elibrary.ru/item.asp?id=27575754}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987624643}


Linking options:
  • http://mi.mathnet.ru/eng/izv8334
  • https://doi.org/10.4213/im8334
  • http://mi.mathnet.ru/eng/izv/v80/i4/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Vassiliev, “Stable cohomology of spaces of non-resultant polynomial systems in $\mathbb R^3$”, Dokl. Math., 96:3 (2017), 616–619  mathnet  crossref  crossref  zmath  isi  elib  scopus
    2. Vassiliev V.A., “Stable Cohomology of Spaces of Non-Resultant Systems of Homogeneous Polynomials in R-N”, Dokl. Math., 98:1 (2018), 330–333  crossref  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:237
    References:22
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018