RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2015, Volume 79, Issue 4, Pages 57–70 (Mi izv8339)  

This article is cited in 8 scientific papers (total in 8 papers)

On Küchle varieties with Picard number greater than 1

A. G. Kuznetsov

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We describe the geometry of Küchle varieties (that is, Fano fourfolds of index 1 contained in Grassmannians as zero loci of sections of equivariant vector bundles) with Picard number greater than 1. We also describe the structure of their derived categories.

Keywords: Fano varieties, special varieties, semiorthogonal decompositions of derived categories.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/im8339

Full text: PDF file (506 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2015, 79:4, 698–709

Bibliographic databases:

Document Type: Article
UDC: 512.7
MSC: 14J35, 14J45, 14M15
Received: 19.01.2015

Citation: A. G. Kuznetsov, “On Küchle varieties with Picard number greater than 1”, Izv. RAN. Ser. Mat., 79:4 (2015), 57–70; Izv. Math., 79:4 (2015), 698–709

Citation in format AMSBIB
\Bibitem{Kuz15}
\by A.~G.~Kuznetsov
\paper On K\"uchle varieties with Picard number greater than~1
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 4
\pages 57--70
\mathnet{http://mi.mathnet.ru/izv8339}
\crossref{https://doi.org/10.4213/im8339}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3397419}
\zmath{https://zbmath.org/?q=an:06503848}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..698K}
\elib{http://elibrary.ru/item.asp?id=24073703}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 4
\pages 698--709
\crossref{https://doi.org/10.1070/IM2015v079n04ABEH002758}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000360463600003}
\elib{http://elibrary.ru/item.asp?id=24944112}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940397313}


Linking options:
  • http://mi.mathnet.ru/eng/izv8339
  • https://doi.org/10.4213/im8339
  • http://mi.mathnet.ru/eng/izv/v79/i4/p57

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Victor V. Przyjalkowski, Constantin A. Shramov, “Double quadrics with large automorphism groups”, Proc. Steklov Inst. Math., 294 (2016), 154–175  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. Anton Fonarev, “Irreducible Ulrich bundles on isotropic Grassmannians”, Mosc. Math. J., 16:4 (2016), 711–726  mathnet  mathscinet
    3. A. Kuznetsov, “Küchle fivefolds of type c5”, Math. Z., 284:3 (2016), 1245–1278  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    4. C. Shramov, V. Przyjalkowski, “Laurent phenomenon for Landau-Ginzburg models of complete intersections in Grassmannians of planes”, Bull. Korean Math. Soc., 54:5 (2017), 1527–1575 , arXiv: 1409.3729  mathnet  crossref  mathscinet  isi  scopus
    5. S. Gorchinskiy, “Integral Chow motives of threefolds with $K$-motives of unit type”, Bull. Korean Math. Soc., 54:5 (2017), 1827–1849 , arXiv: 1703.06977  mathnet  crossref  isi  scopus
    6. A. G. Kuznetsov, Yu. G. Prokhorov, C. A. Shramov, “Hilbert schemes of lines and conics and automorphism groups of Fano threefolds”, Jpn. J. Math., 13:1 (2018), 109–185  crossref  mathscinet  zmath  isi  scopus
    7. A. Kuznetsov, A. Perry, “Derived categories of Gushel-Mukai varieties”, Compos. Math., 154:7 (2018), 1362–1406  crossref  mathscinet  isi
    8. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  adsnasa  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:289
    Full text:28
    References:16
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019