|
This article is cited in 2 scientific papers (total in 2 papers)
Proof of the gamma conjecture for Fano 3-folds of Picard rank 1
V. V. Golysheva, D. Zagierbc a Institute for Information Trnsmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Max Planck Institute for Mathematics
c International Centre for Theoretical Physics
Abstract:
We verify the (first) gamma conjecture, which relates the gamma class
of a Fano variety to the asymptotics at infinity of the Frobenius solutions
of its associated quantum differential equation, for all 17 of the
deformation classes of Fano 3-folds of rank 1. This involves
computing the corresponding limits (‘Frobenius limits’) for the
Picard–Fuchs differential equations of Apéry type associated by mirror
symmetry with the Fano families, and is achieved using two methods, one
combinatorial and the other using the modular properties of the differential
equations. The gamma conjecture for Fano 3-folds always contains a rational
multiple of the number $\zeta(3)$. We present numerical evidence suggesting
that higher Frobenius limits of Apéry-like differential equations may be
related to multiple zeta values.
Keywords:
gamma class, gamma conjecture, Picard–Fuchs equation, Fano 3-fold.
Funding Agency |
Grant Number |
Russian Science Foundation  |
14-50-00150 |
The work of the first author was supported by the Russian Science Foundation
under grant no. 14-50-00150 at the Institute for Information Transmission Problems. |
DOI:
https://doi.org/10.4213/im8343
Full text:
PDF file (694 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2016, 80:1, 24–49
Bibliographic databases:
UDC:
512.776+515.178.1+517.926.4
MSC: 11B33, 11F37, 14J45, 14J81, 14N35 Received: 25.01.2015 Revised: 09.06.2015
Citation:
V. V. Golyshev, D. Zagier, “Proof of the gamma conjecture for Fano 3-folds of Picard rank 1”, Izv. RAN. Ser. Mat., 80:1 (2016), 27–54; Izv. Math., 80:1 (2016), 24–49
Citation in format AMSBIB
\Bibitem{GolZag16}
\by V.~V.~Golyshev, D.~Zagier
\paper Proof of the gamma conjecture for Fano 3-folds of Picard rank~1
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 1
\pages 27--54
\mathnet{http://mi.mathnet.ru/izv8343}
\crossref{https://doi.org/10.4213/im8343}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462676}
\zmath{https://zbmath.org/?q=an:06589635}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80...24G}
\elib{https://elibrary.ru/item.asp?id=25707523}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 1
\pages 24--49
\crossref{https://doi.org/10.1070/IM8343}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000375460600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969174901}
Linking options:
http://mi.mathnet.ru/eng/izv8343https://doi.org/10.4213/im8343 http://mi.mathnet.ru/eng/izv/v80/i1/p27
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Jie Zhou, “GKZ Hypergeometric Series for the Hesse Pencil, Chain Integrals and Orbifold Singularities”, SIGMA, 13 (2017), 030, 32 pp.
-
McCarthy D., Osburn R., Straub A., “Sequences, Modular Forms and Cellular Integrals”, Math. Proc. Camb. Philos. Soc., 168:2 (2020), PII S0305004118000774, 379–404
|
Number of views: |
This page: | 495 | Full text: | 78 | References: | 74 | First page: | 84 |
|