RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 3, Pages 103–150 (Mi izv8378)  

An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces

S. N. Kudryavtsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow

Abstract: We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces corresponding to a non-isotropic multiresolution analysis generated by the tensor product of smooth scaling functions of one variable with sufficiently rapid decay at infinity.

Keywords: orthoprojector, wavelet subspaces, scaling function, multiresolution analysis, Littlewood–Paley theorem.

DOI: https://doi.org/10.4213/im8378

Full text: PDF file (778 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:3, 557–601

Bibliographic databases:

UDC: 517.5
MSC: 42B25, 42C40
Received: 05.04.2015
Revised: 06.07.2015

Citation: S. N. Kudryavtsev, “An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces”, Izv. RAN. Ser. Mat., 80:3 (2016), 103–150; Izv. Math., 80:3 (2016), 557–601

Citation in format AMSBIB
\Bibitem{Kud16}
\by S.~N.~Kudryavtsev
\paper An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 3
\pages 103--150
\mathnet{http://mi.mathnet.ru/izv8378}
\crossref{https://doi.org/10.4213/im8378}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507390}
\zmath{https://zbmath.org/?q=an:1354.42034}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..557K}
\elib{http://elibrary.ru/item.asp?id=26414230}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 557--601
\crossref{https://doi.org/10.1070/IM8378}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000384880300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987654832}


Linking options:
  • http://mi.mathnet.ru/eng/izv8378
  • https://doi.org/10.4213/im8378
  • http://mi.mathnet.ru/eng/izv/v80/i3/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:259
    Full text:18
    References:37
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020