Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2017, Volume 81, Issue 4, Pages 167–230 (Mi izv8438)  

This article is cited in 2 scientific papers (total in 2 papers)

A criterion for semiampleness

V. V. Shokurov

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.

Keywords: sobor, skrepa, big, colimit, nef, semiampleness.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant no. 14-50-00005.


DOI: https://doi.org/10.4213/im8438

Full text: PDF file (863 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2017, 81:4, 827–887

Bibliographic databases:

UDC: 512.76
MSC: 14C20, 14E30
Received: 12.08.2015

Citation: V. V. Shokurov, “A criterion for semiampleness”, Izv. RAN. Ser. Mat., 81:4 (2017), 167–230; Izv. Math., 81:4 (2017), 827–887

Citation in format AMSBIB
\Bibitem{Sho17}
\by V.~V.~Shokurov
\paper A criterion for semiampleness
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 4
\pages 167--230
\mathnet{http://mi.mathnet.ru/izv8438}
\crossref{https://doi.org/10.4213/im8438}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3682787}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..827S}
\elib{https://elibrary.ru/item.asp?id=30357747}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 4
\pages 827--887
\crossref{https://doi.org/10.1070/IM8438}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000411425600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029695578}


Linking options:
  • http://mi.mathnet.ru/eng/izv8438
  • https://doi.org/10.4213/im8438
  • http://mi.mathnet.ru/eng/izv/v81/i4/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. V. Shokurov, “Skrepa morphisms”, Pure Appl. Math. Q., 16:1, 3, SI (2020), 35–124  crossref  mathscinet  zmath  isi
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:448
    Full text:21
    References:37
    First page:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021