RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 6, Pages 247–257 (Mi izv8447)  

This article is cited in 6 scientific papers (total in 6 papers)

Simple right alternative superalgebras of Abelian type whose even part is a field

S. V. Pchelintsev, O. V. Shashkov

Financial University under the Government of the Russian Federation, Moscow

Abstract: We study central simple unital right alternative superalgebras $B=\Gamma\oplus M$ of Abelian type of arbitrary dimension whose even part $\Gamma$ is a field. We prove that every such superalgebra $B=\Gamma\oplus M$, except for the superalgebra $B_{1|2}$, is a double, that is, the odd part can be represented in the form $M=\Gamma x$ for a suitable $x$.
If the generating element $x$ commutes with the even part $\Gamma$, then $B$ is isomorphic to a twisted superalgebra of vector type $B(\Gamma,D,\gamma)$ introduced by Shestakov [1], [2]. But if $x$ commutes with the odd part $M$, then $B$ is isomorphic to a superalgebra $B(\Gamma, ^*,R_\omega)$ introduced in [3] and called an $\omega$-double.
We prove that if the ground field is algebraically closed, then $B$ is isomorphic to one of the superalgebras $B_{1|2}$, $B(\Gamma,D,\gamma)$, $B(\Gamma, ^*,R_\omega)$.

Keywords: simple right alternative superalgebra, superalgebra of Abelian type.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00014
This research was supported by the Russian Foundation for Basic Research (grant no. 14-01-00014).


DOI: https://doi.org/10.4213/im8447

Full text: PDF file (478 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:6, 1231–1241

Bibliographic databases:

UDC: 512.554.5
MSC: 17A70, 17D15
Received: 01.10.2015

Citation: S. V. Pchelintsev, O. V. Shashkov, “Simple right alternative superalgebras of Abelian type whose even part is a field”, Izv. RAN. Ser. Mat., 80:6 (2016), 247–257; Izv. Math., 80:6 (2016), 1231–1241

Citation in format AMSBIB
\Bibitem{PchSha16}
\by S.~V.~Pchelintsev, O.~V.~Shashkov
\paper Simple right alternative superalgebras of Abelian type whose even part is a~field
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 6
\pages 247--257
\mathnet{http://mi.mathnet.ru/izv8447}
\crossref{https://doi.org/10.4213/im8447}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3588821}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1231P}
\elib{http://elibrary.ru/item.asp?id=27484932}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1231--1241
\crossref{https://doi.org/10.1070/IM8447}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000393621500011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011659399}


Linking options:
  • http://mi.mathnet.ru/eng/izv8447
  • https://doi.org/10.4213/im8447
  • http://mi.mathnet.ru/eng/izv/v80/i6/p247

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Pchelintsev, O. V. Shashkov, “Simple finite-dimensional right-alternative superalgebras with semisimple strongly associative even part”, Sb. Math., 208:2 (2017), 223–236  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. S. V. Pchelintsev, O. V. Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with strongly associative even part”, Sb. Math., 208:4 (2017), 531–545  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. S. V. Pchelintsev, O. V. Shashkov, “Singulyarnye 6-mernye superalgebry”, Sib. elektron. matem. izv., 15 (2018), 92–105  mathnet  crossref
    4. S. V. Pchelintsev, O. V. Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with associative-commutative even part over a field of characteristic zero”, Izv. Math., 82:3 (2018), 578–595  mathnet  crossref  crossref  adsnasa  isi  elib
    5. V. N. Zhelyabin, “Structure of some unital simple Jordan superalgebras with associative even part”, Siberian Math. J., 59:6 (2018), 1051–1062  mathnet  crossref  crossref  isi  elib
    6. S. V. Pchelintsev, O. V. Shashkov, “Prostye unitalnye pravoalternativnye superalgebry nad algebroi matrits poryadka $2$”, Algebra i logika, 58:1 (2019), 108–131  mathnet  crossref
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:192
    Full text:10
    References:34
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020