RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2017, Volume 81, Issue 2, Pages 53–96 (Mi izv8470)  

This article is cited in 8 scientific papers (total in 8 papers)

New integral representations of the Maslov canonical operator in singular charts

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab, A. I. Shafarevichabcd

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Lomonosov Moscow State University
d National Research Centre "Kurchatov Institute", Moscow

Abstract: We construct a new integral representation of the Maslov canonical operator convenient in numerical-analytical calculations, present an algorithm implementing this representation, and consider a number of examples.

Keywords: Maslov canonical operator, Fourier integral operator, integral representation, asymptotic formula.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00521-
13-01-00664-
Ministry of Education and Science of the Russian Federation -581.2014.1
The research was supported by the Russian Foundation for Basic Research under grants nos. 14-01-00521-a and 13-01-00664-a and by the programme ‘Leading Scientific Schools’ under grant no. NSh-581.2014.1).

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/im8470

Full text: PDF file (1099 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2017, 81:2, 286–328

Bibliographic databases:

UDC: 517.9
MSC: Primary 81Q20; Secondary 53D12, 35C20
Received: 12.11.2015
Revised: 15.03.2016

Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “New integral representations of the Maslov canonical operator in singular charts”, Izv. RAN. Ser. Mat., 81:2 (2017), 53–96; Izv. Math., 81:2 (2017), 286–328

Citation in format AMSBIB
\Bibitem{DobNazSha17}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii, A.~I.~Shafarevich
\paper New integral representations of the Maslov canonical operator in singular charts
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 2
\pages 53--96
\mathnet{http://mi.mathnet.ru/izv8470}
\crossref{https://doi.org/10.4213/im8470}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3629023}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..286D}
\elib{http://elibrary.ru/item.asp?id=28931377}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 2
\pages 286--328
\crossref{https://doi.org/10.1070/IM8470}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000401127400003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019686125}


Linking options:
  • http://mi.mathnet.ru/eng/izv8470
  • https://doi.org/10.4213/im8470
  • http://mi.mathnet.ru/eng/izv/v81/i2/p53

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Asymptotics of linear water waves generated by a localized source near the focal points on the leading edge”, Russ. J. Math. Phys., 24:4 (2017), 544–552  crossref  mathscinet  zmath  isi  scopus
    2. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “The Maslov canonical operator on a pair of Lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sides”, Dokl. Math., 96:1 (2017), 406–410  crossref  mathscinet  zmath  isi  scopus
    3. S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zen'kovich, A. A. Tolchennikov, “Exact and asymptotic solutions of the Cauchy-Poisson problem with localized initial conditions and a constant function of the bottom”, Russ. J. Math. Phys., 24:3 (2017), 310–321  crossref  mathscinet  zmath  isi  scopus
    4. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Waves on the free surface described by linearized equations of hydrodynamics with localized right-hand sides”, Russ. J. Math. Phys., 25:1 (2018), 1–16  crossref  mathscinet  zmath  isi  scopus
    5. A. Anikin, S. Dobrokhotov, V. Nazaikinskii, M. Rouleux, “Semi-classical Green functions”, 2018 Days on Diffraction (DD), International Conference on Days on Diffraction (DD) (St Petersburg, RUSSIA, JUN 04–08, 2018), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 17–23  isi
    6. Dobrokhotov S.Yu., Nazaikinskii V.E., “Asymptotic Localized Solutions of the Shallow Water Equations Over a Nonuniform Bottom”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 040026  crossref  isi
    7. Dobrokhotov S.Yu., Tolchennikov A.A., “Solution of the Two-Dimensional Dirac Equation With a Linear Potential and a Localized Initial Condition”, Russ. J. Math. Phys., 26:2 (2019), 139–151  crossref  isi
    8. S. A. Sergeev, “Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation”, Math. Notes, 106:5 (2019), 801–814  mathnet  crossref  crossref  isi
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:1088
    References:65
    First page:70

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020