RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1993, Volume 57, Issue 5, Pages 210–221 (Mi izv848)  

This article is cited in 8 scientific papers (total in 8 papers)

On cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface

V. A. Krasnov


Abstract: The cohomology classes $x_i=[X_i]^*\in H^2(X(\mathbb C),\mathbb Z)$ are studied, where $X_1,…,X_m$ are the connected components of the set of real points $X(\mathbb R)$ of a real algebraic $\operatorname{GM}$-surface $X$ and $X(\mathbb R)=X_1\cup…\cup X_m$ is assumed to be orientable. The results are applied to obtain congruences for the Euler characteristic of $X(\mathbb R)$.

Full text: PDF file (593 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:2, 385–395

Bibliographic databases:

UDC: 513.6+517.6
MSC: 14F25, 14F45, 14G30, 14J25, 32C05
Received: 28.06.1991

Citation: V. A. Krasnov, “On cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface”, Izv. RAN. Ser. Mat., 57:5 (1993), 210–221; Russian Acad. Sci. Izv. Math., 43:2 (1994), 385–395

Citation in format AMSBIB
\Bibitem{Kra93}
\by V.~A.~Krasnov
\paper On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 5
\pages 210--221
\mathnet{http://mi.mathnet.ru/izv848}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1252764}
\zmath{https://zbmath.org/?q=an:0849.14007}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43..385K}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 2
\pages 385--395
\crossref{https://doi.org/10.1070/IM1994v043n02ABEH001571}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994QC45400011}


Linking options:
  • http://mi.mathnet.ru/eng/izv848
  • http://mi.mathnet.ru/eng/izv/v57/i5/p210

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “On equivariant Grothendieck cohomology of a real algebraic variety, and its applications”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 461–477  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. A. Krasnov, “The equivariant cohomology groups of a real algebraic surface and their applications”, Izv. Math., 60:6 (1996), 1193–1217  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Krasnov, “On orientable real algebraic $M$-surfaces”, Math. Notes, 62:4 (1997), 434–438  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. Math., 62:4 (1998), 695–721  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. V. A. Krasnov, “On the fundamental homology classes of a real algebraic variety”, Math. Notes, 66:2 (1999), 171–173  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. V. A. Krasnov, “Real algebraic varieties without real points”, Izv. Math., 63:4 (1999), 757–790  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. V. A. Krasnov, “The Nikulin Congruence for Four-Dimensional $M$-Varieties”, Math. Notes, 76:2 (2004), 191–199  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:163
    Full text:55
    References:35
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019