RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1993, Volume 57, Issue 4, Pages 3–35 (Mi izv849)  

Vector-valued duality for modules over Banach algebras

A. I. Loginov, V. S. Shulman


Abstract: Pairs of topological modules $\mathcal X$, $\mathcal Y$ over algebras $\mathcal A$, $\mathcal B$ are considered that are in duality, with values in an ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$. An important example: if an arbitrary $\mathcal A$-module $\mathcal Z$ is regarded as an ($\mathcal A$, $\mathcal B$)-bimodule, where $\mathcal B=\operatorname{Hom}_\mathcal A(\mathcal Z,\mathcal Z)$, then for any $\mathcal A$-module $\mathcal X$ the pair $\mathcal X$, $\operatorname{Hom}_\mathcal A(\mathcal X,\mathcal Z)$ is in a natural $\mathcal Z$-duality. Conditions on the ($\mathcal A$, $\mathcal B$)-bimodule $\mathcal Z$ are found under which the bipolar theorem and certain other results in convex analysis carry over to $\mathcal Z$-valued duality. In several cases this enables one to describe the structure of the closed submodules and (in terms of graphs) the closed homomorphisms. Among the applications are results on commutation systems, unbounded derivations, left Hilbert algebras, spaces with an indefinite metric, and multipliers of $C^*$-algebras.

Full text: PDF file (1879 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:1, 1–29

Bibliographic databases:

UDC: 517.98
MSC: Primary 46H25, 46A20; Secondary 46C20, 46L57, 46C05
Received: 10.07.1990

Citation: A. I. Loginov, V. S. Shulman, “Vector-valued duality for modules over Banach algebras”, Izv. RAN. Ser. Mat., 57:4 (1993), 3–35; Russian Acad. Sci. Izv. Math., 43:1 (1994), 1–29

Citation in format AMSBIB
\Bibitem{LogShu93}
\by A.~I.~Loginov, V.~S.~Shulman
\paper Vector-valued duality for modules over Banach algebras
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 4
\pages 3--35
\mathnet{http://mi.mathnet.ru/izv849}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1243349}
\zmath{https://zbmath.org/?q=an:0833.46042}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43....1L}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 1
\pages 1--29
\crossref{https://doi.org/10.1070/IM1994v043n01ABEH001550}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994PQ58000001}


Linking options:
  • http://mi.mathnet.ru/eng/izv849
  • http://mi.mathnet.ru/eng/izv/v57/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:197
    Full text:65
    References:39
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020