RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2017, Volume 81, Issue 6, Pages 23–37 (Mi izv8529)  

This article is cited in 3 scientific papers (total in 3 papers)

Approximation by sums of shifts of a single function on the circle

P. A. Borodin

Lomonosov Moscow State University

Abstract: We study approximation properties of the sums $\sum_{k=1}^nf(t-a_k)$ of shifts of a single function $f$ in real spaces $L_p(\mathbb{T})$ and $C(\mathbb{T})$ on the circle $\mathbb{T}=[0,2\pi)$, and also in complex spaces of functions analytic in the unit disc. We obtain sufficient conditions in terms of the trigonometric Fourier coefficients of $f$ for these sums to be dense in the corresponding subspaces of functions with zero mean. We investigate the accuracy of these conditions. We also suggest a simple algorithm for the approximation by sums of plus or minus shifts of one particular function in $L_2(\mathbb{T})$ and obtain bounds for the rate of approximation.

Keywords: approximation, sums of shifts, Fourier coefficients, semigroup.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00510
15-01-08335
Dynasty Foundation
This paper was written with the financial support of RFBR (grants nos. 14-01-00510, 15-01-08335) and the Dmitry Zimin Dynasty Foundation.


DOI: https://doi.org/10.4213/im8529

Full text: PDF file (544 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2017, 81:6, 1080–1094

Bibliographic databases:

UDC: 517.518.843+517.982.256
MSC: 41A30, 41A25
Received: 18.02.2016
Revised: 21.08.2016

Citation: P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. RAN. Ser. Mat., 81:6 (2017), 23–37; Izv. Math., 81:6 (2017), 1080–1094

Citation in format AMSBIB
\Bibitem{Bor17}
\by P.~A.~Borodin
\paper Approximation by sums of shifts of a~single function on the circle
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 6
\pages 23--37
\mathnet{http://mi.mathnet.ru/izv8529}
\crossref{https://doi.org/10.4213/im8529}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81.1080B}
\elib{http://elibrary.ru/item.asp?id=30737827}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 6
\pages 1080--1094
\crossref{https://doi.org/10.1070/IM8529}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000418891300002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040971331}


Linking options:
  • http://mi.mathnet.ru/eng/izv8529
  • https://doi.org/10.4213/im8529
  • http://mi.mathnet.ru/eng/izv/v81/i6/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. A. Borodin, S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183  crossref  mathscinet  zmath  isi  scopus
    2. P. A. Borodin, “Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk”, Math. Notes, 104:1 (2018), 3–9  mathnet  crossref  crossref  isi  elib
    3. P. A. Borodin, “Density of sums of shifts of a single vector in sequence spaces”, Proc. Steklov Inst. Math., 303 (2018), 31–35  mathnet  crossref  crossref  isi  elib
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:353
    References:31
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019