|
This article is cited in 2 scientific papers (total in 2 papers)
On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
M. E. Shirokov, A. S. Holevo Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
We consider an important characteristic of a quantum
channel called the entropic disturbance. It is defined
as the difference between the $\chi$-quantity of a generalized
ensemble and that of the image of the ensemble under the channel.
We prove the lower semicontinuity of the entropic disturbance for any
infinite-dimensional quantum channel on its natural domain.
A number of useful corollaries of this property are established,
in particular, the existence of a $\chi$-optimal ensemble
for any quantum channel and the continuity of the output
$\chi$-quantity under the energy-type input constraint.
Keywords:
von Neumann entropy, $\chi$-quantity, ensemble of quantum states,
quantum channel, classical capacity.
DOI:
https://doi.org/10.4213/im8609
Full text:
PDF file (622 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2017, 81:5, 1044–1060
Bibliographic databases:
UDC:
519.248.3
MSC: 81P45, 46L53 Received: 13.01.2017
Citation:
M. E. Shirokov, A. S. Holevo, “On lower semicontinuity of the entropic disturbance and its applications in quantum information theory”, Izv. RAN. Ser. Mat., 81:5 (2017), 165–182; Izv. Math., 81:5 (2017), 1044–1060
Citation in format AMSBIB
\Bibitem{ShiHol17}
\by M.~E.~Shirokov, A.~S.~Holevo
\paper On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 5
\pages 165--182
\mathnet{http://mi.mathnet.ru/izv8609}
\crossref{https://doi.org/10.4213/im8609}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3706864}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81.1044S}
\elib{http://elibrary.ru/item.asp?id=30512282}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 5
\pages 1044--1060
\crossref{https://doi.org/10.1070/IM8609}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000416408800006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040987770}
Linking options:
http://mi.mathnet.ru/eng/izv8609https://doi.org/10.4213/im8609 http://mi.mathnet.ru/eng/izv/v81/i5/p165
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
P. Naaijkens, “Subfactors and quantum information theory”, Mathematical Problems in Quantum Physics, Contemporary Mathematics, 717, eds. F. Bonetto, D. Borthwick, E. Harrell, M. Loss, Amer. Math. Soc., 2018, 257–279
-
Ding D., Pavlichin D.S., Wilde M.M., “Quantum Channel Capacities Per Unit Cost”, IEEE Trans. Inf. Theory, 65:1 (2019), 418–435
|
Number of views: |
This page: | 319 | References: | 29 | First page: | 18 |
|