|
This article is cited in 9 scientific papers (total in 9 papers)
On the Frankl–Rödl theorem
A. Sagdeev Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Abstract:
In this paper we considerably strengthen the currently known explicit
exponential lower bound for the chromatic number of a Euclidean space with
a forbidden regular simplex. We also strengthen the exponential lower bound
for the chromatic numbers of distance graphs with large girth.
Keywords:
Frankl–Rödl theorem, Euclidean Ramsey theory, distance graph, chromatic number, girth.
DOI:
https://doi.org/10.4213/im8630
Full text:
PDF file (786 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2018, 82:6, 1196–1224
Bibliographic databases:
UDC:
517
MSC: 05C15, 05C12, 05D10 Received: 18.11.2016 Revised: 09.04.2018
Citation:
A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. RAN. Ser. Mat., 82:6 (2018), 128–157; Izv. Math., 82:6 (2018), 1196–1224
Citation in format AMSBIB
\Bibitem{Sag18}
\by A.~Sagdeev
\paper On the Frankl--R\"odl theorem
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 6
\pages 128--157
\mathnet{http://mi.mathnet.ru/izv8630}
\crossref{https://doi.org/10.4213/im8630}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1196S}
\elib{https://elibrary.ru/item.asp?id=36448785}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 6
\pages 1196--1224
\crossref{https://doi.org/10.1070/IM8630}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454805800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060148447}
Linking options:
http://mi.mathnet.ru/eng/izv8630https://doi.org/10.4213/im8630 http://mi.mathnet.ru/eng/izv/v82/i6/p128
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396
-
A. A. Sagdeev, “O khromaticheskikh chislakh, sootvetstvuyuschikh eksponentsialno ramseevskim mnozhestvam”, Kombinatorika i teoriya grafov. X, Zap. nauchn. sem. POMI, 475, POMI, SPb., 2018, 174–189
-
L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203
-
Ph. A. Pushnyakov, “The Number of Edges in Induced Subgraphs of Some Distance Graphs”, Math. Notes, 105:4 (2019), 582–591
-
R. I. Prosanov, “Counterexamples to Borsuk's Conjecture with Large Girth”, Math. Notes, 105:6 (2019), 874–880
-
A. A. Sagdeev, “On the Partition of an Odd Number into Three Primes in a Prescribed Proportion”, Math. Notes, 106:1 (2019), 98–107
-
A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395
-
A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comenian. (N.S.), 88:3 (2019), 1029–1033
-
Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the Number of Edges in Special Subgraphs of a Distance Graph”, Math. Notes, 107:2 (2020), 322–332
|
Number of views: |
This page: | 204 | References: | 25 | First page: | 15 |
|