RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2018, Volume 82, Issue 3, Pages 69–89 (Mi izv8636)  

Ultrasoluble coverings of some nilpotent groups by a cyclic group over number fields and related questions

D. D. Kiselev

All-Russian Academy of International Trade

Abstract: -Let $F$ be a finite nilpotent group of odd order. For every finite cyclic subgroup $A$ of odd order we find necessary and sufficient conditions for a class $h\in H^2(F,A)$ to determine an ultrasoluble extension (under the additional assumption of minimality of all $p$-Sylow subextensions to the extension with class $h$ for all non-Abelian $p$-Sylow subgroups $F_p$ of $F$), that is, for the existence of a Galois extension of number fields $K/k$ with group $F$ such that the corresponding embedding problem is ultrasoluble (it has solutions and all such solutions are fields). We also establish a number of related results.

Keywords: -embedding problem, concordance condition, ultrasolubility, co-embedding problem.

DOI: https://doi.org/10.4213/im8636

Full text: PDF file (849 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2018, 82:3, 512–531

Bibliographic databases:

UDC: 512.623.32
MSC: 12F12, 11R32, 16K50
Received: 05.12.2016
Revised: 09.04.2017

Citation: D. D. Kiselev, “Ultrasoluble coverings of some nilpotent groups by a cyclic group over number fields and related questions”, Izv. RAN. Ser. Mat., 82:3 (2018), 69–89; Izv. Math., 82:3 (2018), 512–531

Citation in format AMSBIB
\Bibitem{Kis18}
\by D.~D.~Kiselev
\paper Ultrasoluble coverings of some nilpotent groups by a~cyclic group
over number fields and related questions
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 3
\pages 69--89
\mathnet{http://mi.mathnet.ru/izv8636}
\crossref{https://doi.org/10.4213/im8636}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..512K}
\elib{http://elibrary.ru/item.asp?id=34940560}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 512--531
\crossref{https://doi.org/10.1070/IM8636}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000437922000004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049847847}


Linking options:
  • http://mi.mathnet.ru/eng/izv8636
  • https://doi.org/10.4213/im8636
  • http://mi.mathnet.ru/eng/izv/v82/i3/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:154
    References:12
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019