RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2018, Volume 82, Issue 5, Pages 167–226 (Mi izv8659)  

On the global solubility of the Cauchy problem for hyperbolic Monge–Ampére systems

D. V. Tunitsky

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow

Abstract: This paper is devoted to the global solubility of the Cauchy problem for a class of non-linear hyperbolic systems of two first-order equations with two independent variables. This class contains quasilinear systems. The problem has a unique maximal (with respect to inclusion) many-valued solution, which possesses a completeness property. Namely, characteristics of various families lying on such a solution and converging to the corresponding boundary point have infinite length.

Keywords: non-linear systems, quasilinear systems, Cauchy problem, many-valued solutions, characteristic uniformization.

DOI: https://doi.org/10.4213/im8659

Full text: PDF file (1129 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2018, 82:5, 1019–1075

Bibliographic databases:

Document Type: Article
UDC: 517.956.35+517.957+514.763.8
MSC: 35L60, 35L45, 35A30
Received: 24.01.2017

Citation: D. V. Tunitsky, “On the global solubility of the Cauchy problem for hyperbolic Monge–Ampére systems”, Izv. RAN. Ser. Mat., 82:5 (2018), 167–226; Izv. Math., 82:5 (2018), 1019–1075

Citation in format AMSBIB
\Bibitem{Tun18}
\by D.~V.~Tunitsky
\paper On the global solubility of the Cauchy problem for hyperbolic Monge--Amp\'ere systems
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 5
\pages 167--226
\mathnet{http://mi.mathnet.ru/izv8659}
\crossref{https://doi.org/10.4213/im8659}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1019T}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 1019--1075
\crossref{https://doi.org/10.1070/IM8659}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000448948200007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056408320}


Linking options:
  • http://mi.mathnet.ru/eng/izv8659
  • https://doi.org/10.4213/im8659
  • http://mi.mathnet.ru/eng/izv/v82/i5/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:67
    References:9
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019