RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2019, Volume 83, Issue 1, Pages 25–58 (Mi izv8745)  

Dual and almost-dual homogeneous spaces

V. V. Gorbatsevich


Abstract: We study homogeneous spaces $G/H$ such that the transitive action of the Lie group $G$ on $G/H$ preserves the structure of a dual or almost-dual manifold. We consider general homogeneous spaces of this kind as well as compact or lower-dimensional ones.

Keywords: dual manifold, almost-dual structure, homogeneous space.

DOI: https://doi.org/10.4213/im8745

Full text: PDF file (676 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2019, 83:1, 20–48

Bibliographic databases:

UDC: 512.816.5
MSC: 30G35, 53C15, 57T15
Received: 05.12.2017

Citation: V. V. Gorbatsevich, “Dual and almost-dual homogeneous spaces”, Izv. RAN. Ser. Mat., 83:1 (2019), 25–58; Izv. Math., 83:1 (2019), 20–48

Citation in format AMSBIB
\Bibitem{Gor19}
\by V.~V.~Gorbatsevich
\paper Dual and almost-dual homogeneous spaces
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 1
\pages 25--58
\mathnet{http://mi.mathnet.ru/izv8745}
\crossref{https://doi.org/10.4213/im8745}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83...20G}
\elib{http://elibrary.ru/item.asp?id=37045037}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 1
\pages 20--48
\crossref{https://doi.org/10.1070/IM8745}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000459866800002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064079204}


Linking options:
  • http://mi.mathnet.ru/eng/izv8745
  • https://doi.org/10.4213/im8745
  • http://mi.mathnet.ru/eng/izv/v83/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:134
    References:17
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019