RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2019, Volume 83, Issue 4, Pages 50–85 (Mi izv8830)  

Equivariant exceptional collections on smooth toric stacks

L. A. Borisova, D. O. Orlovb

a Department of Mathematics, Rutgers University, USA
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We study the bounded derived categories of torus-equivariant coherent sheaves on smooth toric varieties and Deligne-Mumford stacks. We construct and describe full exceptional collections in these categories. We also observe that these categories depend only on the PL homeomorphism type of the corresponding simplicial complex.

Keywords: Toric varieties and stacks, equivariant coherent sheaves, derived categories, exceptional collections, simplicial complexes.

Funding Agency Grant Number
National Science Foundation DMS-1601907


DOI: https://doi.org/10.4213/im8830

Full text: PDF file (929 kB)
First page: PDF file
References: PDF file   HTML file

English version:
DOI: https://doi.org/10.1070/IM8830

UDC: 512.7
MSC: 14F05, 14M25, 55U10.
Received: 21.06.2018

Citation: L. A. Borisov, D. O. Orlov, “Equivariant exceptional collections on smooth toric stacks”, Izv. RAN. Ser. Mat., 83:4 (2019), 50–85

Citation in format AMSBIB
\Bibitem{BorOrl19}
\by L.~A.~Borisov, D.~O.~Orlov
\paper Equivariant exceptional collections on smooth toric stacks
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 4
\pages 50--85
\mathnet{http://mi.mathnet.ru/izv8830}
\crossref{https://doi.org/10.4213/im8830}
\elib{http://elibrary.ru/item.asp?id=38590296}


Linking options:
  • http://mi.mathnet.ru/eng/izv8830
  • https://doi.org/10.4213/im8830
  • http://mi.mathnet.ru/eng/izv/v83/i4/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:76
    References:12
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019