Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2019, Volume 83, Issue 4, Pages 194–225 (Mi izv8831)  

This article is cited in 2 scientific papers (total in 2 papers)

Three plots about Cremona groups

V. L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The first group of results of the paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, of the Cremona groups in other groups. The third concerns the connectedness of the Cremona groups.

Keywords: Cremona group, compressibility, Jordan property, connectedness.

Funding Agency Grant Number
Russian Science Foundation 19-11-00237
This work was done under a grant from the Russian Science Foundation (project no. 19-11-00237).


DOI: https://doi.org/10.4213/im8831

Full text: PDF file (886 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2019, 83:4, 830–859

Bibliographic databases:

UDC: 512.745.4
MSC: 14E07
Received: 27.06.2018

Citation: V. L. Popov, “Three plots about Cremona groups”, Izv. RAN. Ser. Mat., 83:4 (2019), 194–225; Izv. Math., 83:4 (2019), 830–859

Citation in format AMSBIB
\Bibitem{Pop19}
\by V.~L.~Popov
\paper Three plots about Cremona groups
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 4
\pages 194--225
\mathnet{http://mi.mathnet.ru/izv8831}
\crossref{https://doi.org/10.4213/im8831}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3985695}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..830P}
\elib{https://elibrary.ru/item.asp?id=38590301}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 4
\pages 830--859
\crossref{https://doi.org/10.1070/IM8831}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000487318500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074885058}


Linking options:
  • http://mi.mathnet.ru/eng/izv8831
  • https://doi.org/10.4213/im8831
  • http://mi.mathnet.ru/eng/izv/v83/i4/p194

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. G. Prokhorov, K. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542  mathnet  crossref  crossref  isi  elib
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:238
    References:15
    First page:15

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021