Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2020, Volume 84, Issue 3, Pages 168–184 (Mi izv8847)  

This article is cited in 1 scientific paper (total in 1 paper)

On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity

V. N. Pavlenkoa, D. K. Potapovb*

a Chelyabinsk State University
b Saint Petersburg State University

Abstract: We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Let $\widetilde{u}(x)$ be a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting $v(x)=u(x)-\widetilde{u}(x)$, we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function $v(x)=0$ is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray $[\lambda^*,+\infty)$, where $\lambda^*>0$. As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.

Keywords: elliptic boundary-value problem, problem with parameter, discontinuous non-linearity, iterative process, minimal solution, semiregular solution, spectrum, Gol'dshtik model.
* Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/im8847

Full text: PDF file (590 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2020, 84:3, 592–607

Bibliographic databases:

UDC: 517.95
PACS: N/A
MSC: 35J25, 35J60, 35P30
Received: 25.07.2018
Revised: 25.06.2019

Citation: V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. RAN. Ser. Mat., 84:3 (2020), 168–184; Izv. Math., 84:3 (2020), 592–607

Citation in format AMSBIB
\Bibitem{PavPot20}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
\jour Izv. RAN. Ser. Mat.
\yr 2020
\vol 84
\issue 3
\pages 168--184
\mathnet{http://mi.mathnet.ru/izv8847}
\crossref{https://doi.org/10.4213/im8847}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4101836}
\elib{https://elibrary.ru/item.asp?id=45290274}
\transl
\jour Izv. Math.
\yr 2020
\vol 84
\issue 3
\pages 592--607
\crossref{https://doi.org/10.1070/IM8847}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000541858800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090914101}


Linking options:
  • http://mi.mathnet.ru/eng/izv8847
  • https://doi.org/10.4213/im8847
  • http://mi.mathnet.ru/eng/izv/v84/i3/p168

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278  mathnet  crossref  crossref  isi  elib
  • Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya Izvestiya: Mathematics
    Number of views:
    This page:177
    References:20
    First page:9

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021