Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Izv. RAN. Ser. Mat.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Izv. RAN. Ser. Mat., 2020, Volume 84, Issue 3, Pages 168–184 (Mi izv8847)  On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity

V. N. Pavlenkoa, D. K. Potapovb*

a Chelyabinsk State University
b Saint Petersburg State University

Abstract: We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Let $\widetilde{u}(x)$ be a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting $v(x)=u(x)-\widetilde{u}(x)$, we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function $v(x)=0$ is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray $[\lambda^*,+\infty)$, where $\lambda^*>0$. As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.

Keywords: elliptic boundary-value problem, problem with parameter, discontinuous non-linearity, iterative process, minimal solution, semiregular solution, spectrum, Gol'dshtik model.
* Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/im8847  Full text: PDF file (590 kB) First page: PDF file References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2020, 84:3, 592–607 Bibliographic databases:    UDC: 517.95
PACS: N/A
MSC: 35J25, 35J60, 35P30
Revised: 25.06.2019

Citation: V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. RAN. Ser. Mat., 84:3 (2020), 168–184; Izv. Math., 84:3 (2020), 592–607 Citation in format AMSBIB
\Bibitem{PavPot20} \by V.~N.~Pavlenko, D.~K.~Potapov \paper On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity \jour Izv. RAN. Ser. Mat. \yr 2020 \vol 84 \issue 3 \pages 168--184 \mathnet{http://mi.mathnet.ru/izv8847} \crossref{https://doi.org/10.4213/im8847} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=4101836} \elib{https://elibrary.ru/item.asp?id=45290274} \transl \jour Izv. Math. \yr 2020 \vol 84 \issue 3 \pages 592--607 \crossref{https://doi.org/10.1070/IM8847} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000541858800001} \scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090914101} 

• http://mi.mathnet.ru/eng/izv8847
• https://doi.org/10.4213/im8847
• http://mi.mathnet.ru/eng/izv/v84/i3/p168

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278     •   Contact us: math-net2021_12 [at] mi-ras ru Terms of Use Registration to the website Logotypes © Steklov Mathematical Institute RAS, 2021