|
This article is cited in 2 scientific papers (total in 2 papers)
On sets uniqueness for series in various systems of functions
N. N. Kholshchevnikova
Abstract:
It is proved that sets of first category are $\mathscr U$-sets for series in the Rademacher system. For series in the Faber–Schauder system with coefficients tending to zero it is proved that every countable set and every set of Cantor type with ratio $2^{-m}$ $(m=2,3,4,…)$ is a set of uniqueness.
Full text:
PDF file (829 kB)
References:
PDF file
HTML file
English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 42:1, 149–162
Bibliographic databases:
UDC:
517.5
MSC: Primary 42C25; Secondary 42C10 Received: 29.05.1991
Citation:
N. N. Kholshchevnikova, “On sets uniqueness for series in various systems of functions”, Izv. RAN. Ser. Mat., 57:1 (1993), 167–182; Russian Acad. Sci. Izv. Math., 42:1 (1994), 149–162
Citation in format AMSBIB
\Bibitem{Kho93}
\by N.~N.~Kholshchevnikova
\paper On~sets uniqueness for series in various systems of functions
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 1
\pages 167--182
\mathnet{http://mi.mathnet.ru/izv892}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1220586}
\zmath{https://zbmath.org/?q=an:0814.42021}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42..149K}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 1
\pages 149--162
\crossref{https://doi.org/10.1070/IM1994v042n01ABEH001528}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994NH32100008}
Linking options:
http://mi.mathnet.ru/eng/izv892 http://mi.mathnet.ru/eng/izv/v57/i1/p167
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. A. Skvortsov, N. N. Kholshchevnikova, “$M$-sets for three classes of series in the Faber–Schauder system”, Math. Notes, 64:5 (1998), 634–645
-
N. N. Kholshchevnikova, “Theorems on unions of $U$-sets”, Math. Notes, 67:5 (2000), 657–664
|
Number of views: |
This page: | 323 | Full text: | 74 | References: | 47 | First page: | 2 |
|