Известия Российской академии наук. Серия математическая
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. РАН. Сер. матем., 2021, том 85, выпуск 5, страницы 152–189 (Mi izv9098)  

О проблеме классификации многочленов $f$ с периодическим разложением $\sqrt{f}$ в непрерывную дробь в гиперэллиптических полях

В. П. Платоновab, Г. В. Федоровca

a Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук, г. Москва
b Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
c Московский государственный университет имени М. В. Ломоносова

Аннотация: Классическая проблема периодичности непрерывных дробей элементов гиперэллиптических полей имеет большую и глубокую историю. До сих пор эта проблема была далека от полного решения. Удивительный результат был получен в статье [1] для квадратичных расширений, определяемых кубическими многочленами с коэффициентами из поля рациональных чисел $\mathbb{Q}$: за исключением тривиальных случаев с точностью до эквивалентности существуют только три кубических многочлена над $\mathbb{Q}$, квадратный корень из которых разлагается в периодическую непрерывную дробь в поле формальных степенных рядов $\mathbb{Q}((x))$. С учетом результатов статьи [1] в этой статье полностью решена проблема классификации многочленов $f$, с периодическим разложением $\sqrt{f}$ в непрерывную дробь для эллиптических полей с полем рациональных чисел в качестве поля констант.
Библиография: 29 наименований.

Ключевые слова: проблема периодичности, непрерывные дроби, эллиптические кривые, гиперэллиптические поля, якобиево многообразие, группа классов дивизоров, символьные вычисления, компьютерная алгебра.

DOI: https://doi.org/10.4213/im9098

Полный текст: PDF файл (668 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Англоязычная версия:
DOI: https://doi.org/10.1070/IM9098

Тип публикации: Статья
УДК: 511.6
Поступило в редакцию: 20.08.2020
Исправленный вариант: 01.12.2020

Образец цитирования: В. П. Платонов, Г. В. Федоров, “О проблеме классификации многочленов $f$ с периодическим разложением $\sqrt{f}$ в непрерывную дробь в гиперэллиптических полях”, Изв. РАН. Сер. матем., 85:5 (2021), 152–189

Цитирование в формате AMSBIB
\RBibitem{PlaFed21}
\by В.~П.~Платонов, Г.~В.~Федоров
\paper О~проблеме классификации многочленов~$f$ с~периодическим разложением $\sqrt{f}$ в~непрерывную дробь в~гиперэллиптических полях
\jour Изв. РАН. Сер. матем.
\yr 2021
\vol 85
\issue 5
\pages 152--189
\mathnet{http://mi.mathnet.ru/izv9098}
\crossref{https://doi.org/10.4213/im9098}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/izv9098
  • https://doi.org/10.4213/im9098
  • http://mi.mathnet.ru/rus/izv/v85/i5/p152

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Просмотров:
    Эта страница:76
    Литература:1
    Первая стр.:3
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021