RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1992, Volume 56, Issue 4, Pages 813–851 (Mi izv928)  

This article is cited in 6 scientific papers (total in 6 papers)

Averaging of quasilinear parabolic equations with rapidly oscillating principal part. Exponential dichotomy

V. B. Levenshtam

Rostov State University

Abstract: The first part of this article is an investigation of the question of preservation of an exponential dichotomy for solutions of a linear parabolic equation upon a high-frequency perturbation of its principal terms. The second part contains a justification of the averaging principle on the whole time axis for quasilinear parabolic equations with rapidly oscillating principal part.

Full text: PDF file (1965 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1993, 41:1, 95–132

Bibliographic databases:

UDC: 519.4+513.88
MSC: Primary 35K30, 35K55; Secondary 35B20, 34C29
Received: 25.06.1990

Citation: V. B. Levenshtam, “Averaging of quasilinear parabolic equations with rapidly oscillating principal part. Exponential dichotomy”, Izv. RAN. Ser. Mat., 56:4 (1992), 813–851; Russian Acad. Sci. Izv. Math., 41:1 (1993), 95–132

Citation in format AMSBIB
\Bibitem{Lev92}
\by V.~B.~Levenshtam
\paper Averaging of quasilinear parabolic equations with rapidly oscillating principal part. Exponential dichotomy
\jour Izv. RAN. Ser. Mat.
\yr 1992
\vol 56
\issue 4
\pages 813--851
\mathnet{http://mi.mathnet.ru/izv928}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1208152}
\zmath{https://zbmath.org/?q=an:0795.35041}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..41...95L}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 41
\issue 1
\pages 95--132
\crossref{https://doi.org/10.1070/IM1993v041n01ABEH002253}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LZ84700005}


Linking options:
  • http://mi.mathnet.ru/eng/izv928
  • http://mi.mathnet.ru/eng/izv/v56/i4/p813

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Levenshtam V., “Senior Approximation of Averaging Method for Quasi-Linear Parabolic Equations”, Dokl. Akad. Nauk, 353:5 (1997), 599–601  mathnet  mathscinet  zmath  isi
    2. V. B. Levenshtam, “Higher approximations of the averaging method for quasilinear parabolic equations with a rapidly oscillating principal part in the case of the Cauchy problem”, Math. Notes, 65:4 (1999), 470–478  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. B. Levenshtam, “On an averaging method for quasilinear parabolic equations with rapidly oscillating coefficients”, Russian Math. (Iz. VUZ), 44:7 (2000), 20–28  mathnet  mathscinet  zmath  elib
    4. V. B. Levenshtam, “Unique Solvability of Parabolic Equations with Almost-Periodic Coefficients in Hölder Spaces”, Math. Notes, 73:6 (2003), 813–828  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. B. Levenshtam, “Uniform exponential dichotomy of parabolic operators with rapidly oscillating coefficients”, Math. Notes, 79:5 (2006), 675–680  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. A. Atencio, “Separation of Chiral Molecules: A Way to Homochirality”, Orig Life Evol Biosph, 2012  crossref
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:249
    Full text:89
    References:21
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020