RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1996, Volume 60, Issue 6, Pages 3–30 (Mi izv93)  

This article is cited in 4 scientific papers (total in 4 papers)

Systems of conservation laws in the context of the projective theory of congruences

S. I. Agafonova, E. V. Ferapontov

a Loughborough University

Abstract: We associate to a system of $n$ conservation laws
$$ u_t^i=f^i(u)_x, \qquad i=1,…,n, $$
an $n$-parameter family of lines in $(n+1)$-dimensional space $A^{n+1}$ given by the equations
$$ y^i=u^iy^0-f^i(u), \qquad i=1,…,n. $$
Thereby we establish a correspondence between the reciprocal transformations of the system of conservation laws and the projective transformations of the space $A^{n+1}$, the rarefaction curves of the system of conservation laws and the developable surfaces of the associated family of lines, the Temple class of systems of conservation laws and the class of families of lines whose developable surfaces are either flat or conic. In the particular case $n=2$ the systems of the Temple class are explicitly described in terms of the theory of congruences.

DOI: https://doi.org/10.4213/im93

Full text: PDF file (2136 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1996, 60:6, 1097–1122

Bibliographic databases:

MSC: 35L65, 53A20
Received: 29.04.1996

Citation: S. I. Agafonov, E. V. Ferapontov, “Systems of conservation laws in the context of the projective theory of congruences”, Izv. RAN. Ser. Mat., 60:6 (1996), 3–30; Izv. Math., 60:6 (1996), 1097–1122

Citation in format AMSBIB
\Bibitem{AgaFer96}
\by S.~I.~Agafonov, E.~V.~Ferapontov
\paper Systems of conservation laws in the context of the projective theory of congruences
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 6
\pages 3--30
\mathnet{http://mi.mathnet.ru/izv93}
\crossref{https://doi.org/10.4213/im93}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1438880}
\zmath{https://zbmath.org/?q=an:0889.35063}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 6
\pages 1097--1122
\crossref{https://doi.org/10.1070/IM1996v060n06ABEH000093}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996XF63000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747002253}


Linking options:
  • http://mi.mathnet.ru/eng/izv93
  • https://doi.org/10.4213/im93
  • http://mi.mathnet.ru/eng/izv/v60/i6/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tsarev S.P., “Integrability of equations of hydrodynamic type from the end of the 19th to the end of the 20th century”, Integrability: the Seiberg-Witten and Whitham Equations, 2000, 251–265  mathscinet  zmath  isi
    2. Andreichenko D.K., Andreichenko K.P., Petrova T.Y., “Dynamic modelling of a non-conservative discrete-continuous system”, Pmm Journal of Applied Mathematics and Mechanics, 68:5 (2004), 691–698  crossref  adsnasa  isi  scopus
    3. Konopelchenko B.G., Ortenzi G., “Algebraic varieties in the Birkhoff strata of the Grassmannian Gr((2)): Harrison cohomology and integrable systems”, Journal of Physics a-Mathematical and Theoretical, 44:46 (2011), 465201  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Ferapontov E.V., Pavlov M.V., Vitolo R.F., “Systems of Conservation Laws With Third-Order Hamiltonian Structures”, Lett. Math. Phys., 108:6 (2018), 1525–1550  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:255
    Full text:107
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019