RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1992, Volume 56, Issue 3, Pages 538–565 (Mi izv938)  

This article is cited in 3 scientific papers (total in 3 papers)

On the representation of analytic functions of several variables by exponential series

A. B. Sekerin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: The author considers the problem of representing functions analytic in a neighborhood of a closed, bounded, convex, multidimensional domain by exponential series (with formulas for the coefficients). In addition, the system of exponents should be the collection of intersection points of the zero planes of a special entire function. A complete description is given of a class of convex domains for which it is possible to solve the problem of representing functions by exponential series in this way.

Full text: PDF file (1397 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1993, 40:3, 503–527

Bibliographic databases:

UDC: 517.537
MSC: Primary 32A05; Secondary 32A07, 32A15
Received: 11.02.1991

Citation: A. B. Sekerin, “On the representation of analytic functions of several variables by exponential series”, Izv. RAN. Ser. Mat., 56:3 (1992), 538–565; Russian Acad. Sci. Izv. Math., 40:3 (1993), 503–527

Citation in format AMSBIB
\Bibitem{Sek92}
\by A.~B.~Sekerin
\paper On~the~representation of analytic functions of several variables by exponential series
\jour Izv. RAN. Ser. Mat.
\yr 1992
\vol 56
\issue 3
\pages 538--565
\mathnet{http://mi.mathnet.ru/izv938}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1188329}
\zmath{https://zbmath.org/?q=an:0787.32004|0771.32004}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..40..503S}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 40
\issue 3
\pages 503--527
\crossref{https://doi.org/10.1070/IM1993v040n03ABEH002175}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LR56700003}


Linking options:
  • http://mi.mathnet.ru/eng/izv938
  • http://mi.mathnet.ru/eng/izv/v56/i3/p538

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. B. Sekerin, “Radon transformations and zonoids”, Math. Notes, 59:2 (1996), 180–184  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. B. Sekerin, “Applications of the Radon transform in the theory of plurisubharmonic functions”, Russian Math. (Iz. VUZ), 47:2 (2003), 44–52  mathnet  mathscinet  zmath  elib
    3. S. N. Melikhov, S. Momm, “On the expansions of analytic functions on convex locally closed sets in exponential series”, Vladikavk. matem. zhurn., 13:1 (2011), 44–58  mathnet  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:259
    Full text:86
    References:48
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020