Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1992, Volume 56, Issue 3, Pages 538–565 (Mi izv938)  

This article is cited in 3 scientific papers (total in 3 papers)

On the representation of analytic functions of several variables by exponential series

A. B. Sekerin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: The author considers the problem of representing functions analytic in a neighborhood of a closed, bounded, convex, multidimensional domain by exponential series (with formulas for the coefficients). In addition, the system of exponents should be the collection of intersection points of the zero planes of a special entire function. A complete description is given of a class of convex domains for which it is possible to solve the problem of representing functions by exponential series in this way.

Full text: PDF file (1397 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1993, 40:3, 503–527

Bibliographic databases:

UDC: 517.537
MSC: Primary 32A05; Secondary 32A07, 32A15
Received: 11.02.1991

Citation: A. B. Sekerin, “On the representation of analytic functions of several variables by exponential series”, Izv. RAN. Ser. Mat., 56:3 (1992), 538–565; Russian Acad. Sci. Izv. Math., 40:3 (1993), 503–527

Citation in format AMSBIB
\Bibitem{Sek92}
\by A.~B.~Sekerin
\paper On~the~representation of analytic functions of several variables by exponential series
\jour Izv. RAN. Ser. Mat.
\yr 1992
\vol 56
\issue 3
\pages 538--565
\mathnet{http://mi.mathnet.ru/izv938}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1188329}
\zmath{https://zbmath.org/?q=an:0787.32004|0771.32004}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..40..503S}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 40
\issue 3
\pages 503--527
\crossref{https://doi.org/10.1070/IM1993v040n03ABEH002175}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LR56700003}


Linking options:
  • http://mi.mathnet.ru/eng/izv938
  • http://mi.mathnet.ru/eng/izv/v56/i3/p538

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. B. Sekerin, “Radon transformations and zonoids”, Math. Notes, 59:2 (1996), 180–184  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. B. Sekerin, “Applications of the Radon transform in the theory of plurisubharmonic functions”, Russian Math. (Iz. VUZ), 47:2 (2003), 44–52  mathnet  mathscinet  zmath  elib
    3. S. N. Melikhov, S. Momm, “On the expansions of analytic functions on convex locally closed sets in exponential series”, Vladikavk. matem. zhurn., 13:1 (2011), 44–58  mathnet  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:276
    Full text:95
    References:48
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021