|
Twistors and $G$-structures
D. V. Alekseevskiia, M. M. Graev a International Center "Sophus Lie"
Abstract:
The authors distinguish a class of twistor spaces $Z=P\times_GS$ that are associated, following Berard-Bergery and Ochiai, with $G$-structures $P$ on even-dimensional manifolds and connections in $P$. It is assumed that $S=G/H$ is a complex totally geodesic submanifold of the affine symmetric space $\operatorname{GL_{2n}}(\mathbf R)/\operatorname{GL_n}(\mathbf C)$. This class includes all the basic examples of twistor spaces fibered over an even-dimensional base. The integrability of the canonical almost complex structure $J_Z$ and the holomorphy of the canonical distribution $\mathscr H_Z$ in $Z$ are studied in terms of some natural $H$-structure with a connection on the manifold $Z$. Some examples are also treated.
Full text:
PDF file (1990 kB)
References:
PDF file
HTML file
English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1993, 40:1, 1–31
Bibliographic databases:
UDC:
514.76
MSC: Primary 53C10, 53C15, 53C35, 58E20; Secondary 32L25, 22E45, 58A30, 32M10 Received: 03.04.1991
Citation:
D. V. Alekseevskii, M. M. Graev, “Twistors and $G$-structures”, Izv. RAN. Ser. Mat., 56:1 (1992), 3–37; Russian Acad. Sci. Izv. Math., 40:1 (1993), 1–31
Citation in format AMSBIB
\Bibitem{AleGra92}
\by D.~V.~Alekseevskii, M.~M.~Graev
\paper Twistors and $G$-structures
\jour Izv. RAN. Ser. Mat.
\yr 1992
\vol 56
\issue 1
\pages 3--37
\mathnet{http://mi.mathnet.ru/izv955}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1162632}
\zmath{https://zbmath.org/?q=an:0778.53028|0764.53021}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..40....1A}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 40
\issue 1
\pages 1--31
\crossref{https://doi.org/10.1070/IM1993v040n01ABEH001851}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993LD16700001}
Linking options:
http://mi.mathnet.ru/eng/izv955 http://mi.mathnet.ru/eng/izv/v56/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 300 | Full text: | 98 | References: | 55 | First page: | 2 |
|