RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1996, Volume 60, Issue 6, Pages 101–126 (Mi izv97)  

This article is cited in 7 scientific papers (total in 7 papers)

The equivariant cohomology groups of a real algebraic surface and their applications

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: Exact sequences connecting the equivariant cohomology groups of a real algebraic surface are constructed, and sufficient conditions for the convergence of the second spectral sequence are established. The results obtained are applied to the study of the topology of a surface and to the determination of the Brauer group.

DOI: https://doi.org/10.4213/im97

Full text: PDF file (1882 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1996, 60:6, 1193–1217

Bibliographic databases:

MSC: 55N91
Received: 18.07.1995

Citation: V. A. Krasnov, “The equivariant cohomology groups of a real algebraic surface and their applications”, Izv. RAN. Ser. Mat., 60:6 (1996), 101–126; Izv. Math., 60:6 (1996), 1193–1217

Citation in format AMSBIB
\Bibitem{Kra96}
\by V.~A.~Krasnov
\paper The equivariant cohomology groups of a~real algebraic surface and their applications
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 6
\pages 101--126
\mathnet{http://mi.mathnet.ru/izv97}
\crossref{https://doi.org/10.4213/im97}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1438883}
\zmath{https://zbmath.org/?q=an:0902.55002}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 6
\pages 1193--1217
\crossref{https://doi.org/10.1070/IM1996v060n06ABEH000097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996XF63000004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746952553}


Linking options:
  • http://mi.mathnet.ru/eng/izv97
  • https://doi.org/10.4213/im97
  • http://mi.mathnet.ru/eng/izv/v60/i6/p101

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “On orientable real algebraic $M$-surfaces”, Math. Notes, 62:4 (1997), 434–438  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Krasnov, “Real algebraic GM$\mathbb Z$-surfaces”, Izv. Math., 62:4 (1998), 695–721  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. A. Krasnov, “The etale and equivariant cohomology of a real algebraic variety”, Izv. Math., 62:5 (1998), 1013–1034  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. A. Krasnov, “Analogues of the Harnack–Thom inequality for a real algebraic surface”, Izv. Math., 64:5 (2000), 915–937  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. V. A. Krasnov, “On the Picard group and the Brauer group of a real algebraic surface”, Math. Notes, 67:2 (2000), 168–175  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. V. A. Krasnov, “On the Fano Surface of a Real Cubic $M$-Threefold”, Math. Notes, 78:5 (2005), 662–668  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:209
    Full text:73
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019