Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1991, Volume 55, Issue 6, Pages 1194–1237 (Mi izv970)  

This article is cited in 7 scientific papers (total in 7 papers)

Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$

N. G. Kruzhilin


Abstract: It is shown that there exists a Levi-flat surface in $\mathbf C^2$ with boundary on a given two-dimensional sphere that lies in the boundary of a strictly pseudoconvex domain and is totally real everywhere except at a finite number of elliptic and hyperbolic points.

Full text: PDF file (14706 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1992, 39:3, 1151–1187

Bibliographic databases:

UDC: 517.5
MSC: 32F15, 32F25
Received: 06.04.1991

Citation: N. G. Kruzhilin, “Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$”, Izv. Akad. Nauk SSSR Ser. Mat., 55:6 (1991), 1194–1237; Math. USSR-Izv., 39:3 (1992), 1151–1187

Citation in format AMSBIB
\Bibitem{Kru91}
\by N.~G.~Kruzhilin
\paper Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in $\mathbf C^2$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1991
\vol 55
\issue 6
\pages 1194--1237
\mathnet{http://mi.mathnet.ru/izv970}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1152210}
\zmath{https://zbmath.org/?q=an:0778.32003|0744.32004}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..39.1151K}
\transl
\jour Math. USSR-Izv.
\yr 1992
\vol 39
\issue 3
\pages 1151--1187
\crossref{https://doi.org/10.1070/IM1992v039n03ABEH002242}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KH78700004}


Linking options:
  • http://mi.mathnet.ru/eng/izv970
  • http://mi.mathnet.ru/eng/izv/v55/i6/p1194

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Nemirovski, “Complex analysis and differential topology on complex surfaces”, Russian Math. Surveys, 54:4 (1999), 729–752  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. N. V. Shcherbina, G. Tomassini, “Semilocal Levi-flat extensions”, Izv. Math., 68:3 (2004), 619–641  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Tomassini, G, “Recent results on the extension problem of analytic objects”, Milan Journal of Mathematics, 75:1 (2007), 399  crossref  mathscinet  isi
    4. Egmont Porten, “The Hartogs phenomenon on weakly pseudoconcave hypersurfaces”, Math. Ann, 354:2 (2011), 659  crossref
    5. S. Pinchuk, R. Shafikov, A. Sukhov, “Some Aspects of Holomorphic Mappings: A Survey”, Proc. Steklov Inst. Math., 298 (2017), 212–247  mathnet  crossref  crossref  isi  elib
    6. Forstneric F., “Stein Manifolds and Holomorphic Mappings: the Homotopy Principle in Complex Analysis, 2Nd Edition”, Stein Manifolds and Holomorphic Mappings: the Homotopy Principle in Complex Analysis, 2Nd Edition, Ergebnisse der Mathematik und Iher Grenzgebiete 3 Folge, 56, Springer-Verlag Berlin, 2017, 1–562  crossref  mathscinet  isi
    7. S. Yu. Orevkov, “Quasipositive links and connected sums”, Funct. Anal. Appl., 54:1 (2020), 64–67  mathnet  crossref  crossref  mathscinet  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:202
    Full text:76
    References:29
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021