RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1973, Volume 1, Pages 85–167 (Mi intd4)  

This article is cited in 5 scientific papers (total in 5 papers)

The canonical operator (the real case)

V. P. Maslov, M. V. Fedoryuk


Abstract: We examine homogeneous partial differential and pseudodifferential equations containing a large parameter and the Schrödinger and Helmholtz equations analogous to them in their properties. We present a canonic operator method which permits us to construct asymptotic solutions in the large for such classes of equations. In the paper we present as well the necessary information on analytical mechanics and on the theory of Lagrange manifolds.

Full text: PDF file (3484 kB)

English version:
Journal of Soviet Mathematics, 1975, 3:2, 217–279

Bibliographic databases:

UDC: 517:530.14

Citation: V. P. Maslov, M. V. Fedoryuk, “The canonical operator (the real case)”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1, VINITI, Moscow, 1973, 85–167; J. Soviet Math., 3:2 (1975), 217–279

Citation in format AMSBIB
\Bibitem{MasFed73}
\by V.~P.~Maslov, M.~V.~Fedoryuk
\paper The canonical operator (the real case)
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.
\yr 1973
\vol 1
\pages 85--167
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd4}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=650984}
\zmath{https://zbmath.org/?q=an:0311.35079|0303.35069}
\transl
\jour J. Soviet Math.
\yr 1975
\vol 3
\issue 2
\pages 217--279
\crossref{https://doi.org/10.1007/BF01215390}


Linking options:
  • http://mi.mathnet.ru/eng/intd4
  • http://mi.mathnet.ru/eng/intd/v1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Kucherenko, “Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as $h\to0$ in the case of characteristics of variable multiplicity”, Math. USSR-Izv., 8:3 (1974), 631–666  mathnet  crossref  mathscinet  zmath
    2. V. V. Kucherenko, “The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case”, Math. USSR-Sb., 23:1 (1974), 85–109  mathnet  crossref  mathscinet  zmath
    3. S. G. Gindikin, M. V. Fedoryuk, “Saddle points of parabolic polynomials”, Math. USSR-Sb., 23:3 (1974), 362–381  mathnet  crossref  mathscinet  zmath
    4. V. V. Kucherenko, “Asymptotic solutions of equations with complex characteristics”, Math. USSR-Sb., 24:2 (1974), 159–207  mathnet  crossref  mathscinet  zmath
    5. A. M. Vinogradov, I. S. Krasil'shchik, “What is the hamiltonian formalism?”, Russian Math. Surveys, 30:1 (1975), 177–202  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:592
    Full text:269

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020