RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Сер. Соврем. пробл. мат. Нов. достиж.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техн. Сер. Соврем. пробл. мат., 1983, том 23, страницы 3–32 (Mi intd67)  

Эта публикация цитируется в 23 научных статьях (всего в 23 статьях)

Двумерные операторы Шрёдингера в периодических полях

С. П. Новиков


Аннотация: На основе развития метода обратной задачи изучается класс задач, связанных с описанием движения притягивающей квантовой частицы в возможно нестационарных периодических внешних полях.
Библ. 43.

Полный текст: PDF файл (1616 kB)

Англоязычная версия:
Journal of Soviet Mathematics, 1985, 28:1, 1–20

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.957+512.7

Образец цитирования: С. П. Новиков, “Двумерные операторы Шрёдингера в периодических полях”, Итоги науки и техн. Сер. Соврем. пробл. мат., 23, ВИНИТИ, М., 1983, 3–32; J. Soviet Math., 28:1 (1985), 1–20

Цитирование в формате AMSBIB
\RBibitem{Nov83}
\by С.~П.~Новиков
\paper Двумерные операторы Шрёдингера в~периодических полях
\serial Итоги науки и техн. Сер. Соврем. пробл. мат.
\yr 1983
\vol 23
\pages 3--32
\publ ВИНИТИ
\publaddr М.
\mathnet{http://mi.mathnet.ru/intd67}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=734312}
\zmath{https://zbmath.org/?q=an:0564.35083}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 1
\pages 1--20
\crossref{https://doi.org/10.1007/BF02104894}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/intd67
  • http://mi.mathnet.ru/rus/intd/v23/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. В. Зорич, “Задача С. П. Новикова о полуклассическом движении электрона в однородном магнитном поле, близком к рациональному”, УМН, 39:5(239) (1984), 235–236  mathnet  mathscinet  zmath  adsnasa; A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russian Math. Surveys, 39:5 (1984), 287–288  crossref  isi
    2. И. М. Кричевер, “Метод Лапласа, алгебраические кривые и нелинейные уравнения”, Функц. анализ и его прил., 18:3 (1984), 43–56  mathnet  mathscinet  zmath; I. M. Krichever, “The laplace method, algebraic curves, and nonlinear equations”, Funct. Anal. Appl., 18:3 (1984), 210–223  crossref  isi
    3. П. Г. Гриневич, “Векторный ранг коммутирующих матричных дифференциальных операторов. Доказательство критерия С. П. Новикова”, Изв. АН СССР. Сер. матем., 50:3 (1986), 458–478  mathnet  mathscinet  zmath; P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465  crossref
    4. О. И. Богоявленский, “Некоторые конструкции интегрируемых динамических систем”, Изв. АН СССР. Сер. матем., 51:4 (1987), 737–766  mathnet  mathscinet  zmath; O. I. Bogoyavlenskii, “Some constructions of integrable dynamical systems”, Math. USSR-Izv., 31:1 (1988), 47–75  crossref
    5. Р. Г. Новиков, Г. М. Хенкин, “$\bar\partial$-уравнение в многомерной обратной задаче рассеяния”, УМН, 42:3(255) (1987), 93–152  mathnet  mathscinet  zmath  adsnasa; R. G. Novikov, G. M. Henkin, “The $\bar\partial$-equation in the multidimensional inverse scattering problem”, Russian Math. Surveys, 42:3 (1987), 109–180  crossref  isi
    6. О. И. Мохов, “Коммутирующие дифференциальные операторы ранга 3 и нелиней­ные уравнения”, Изв. АН СССР. Сер. матем., 53:6 (1989), 1291–1315  mathnet  mathscinet  zmath; O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655  crossref
    7. И. М. Кричевер, “Спектральная теория двумерных периодических операторов и ее приложения”, УМН, 44:2(266) (1989), 121–184  mathnet  mathscinet  zmath  adsnasa; I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225  crossref  isi
    8. О. И. Богоявленский, “Опрокидывающиеся солитоны. III”, Изв. АН СССР. Сер. матем., 54:1 (1990), 123–131  mathnet  mathscinet  zmath  adsnasa; O. I. Bogoyavlenskii, “Breaking solitons. III”, Math. USSR-Izv., 36:1 (1991), 129–137  crossref
    9. О. И. Богоявленский, “Опрокидывающиеся солитоны в двумерных интегрируемых уравнениях”, УМН, 45:4(274) (1990), 17–77  mathnet  mathscinet  zmath  adsnasa; O. I. Bogoyavlenskii, “Breaking solitons in $2+1$-dimensional integrable equations”, Russian Math. Surveys, 45:4 (1990), 1–89  crossref  isi
    10. В. М. Мануйлов, “О собственных значениях возмущенного оператора Шрëдингера с иррациональным магнитным потоком”, Функц. анализ и его прил., 28:2 (1994), 57–60  mathnet  mathscinet  zmath; V. M. Manuilov, “On the Eigenvalues of the Perturbed Schrödinger Operator with Irrational Magnetic Flow”, Funct. Anal. Appl., 28:2 (1994), 120–122  crossref  isi
    11. В. А. Гейлер, В. В. Демидов, “Спектр трехмерного оператора Ландау, возмущенного периодическим точечным потенциалом”, ТМФ, 103:2 (1995), 283–294  mathnet  mathscinet  zmath; V. A. Geiler, V. V. Demidov, “Spectrum of three-dimensional landau operator perturbed by a periodic point potential”, Theoret. and Math. Phys., 103:2 (1995), 561–569  crossref  isi
    12. В. А. Гейлер, В. А. Маргулис, И. И. Чучаев, “О лакунах в спектре трехмерного периодического оператора Шрëдингера с магнитным полем”, УМН, 50:1(301) (1995), 195–196  mathnet  mathscinet  zmath  adsnasa; V. A. Geiler, V. A. Margulis, I. I. Chuchaev, “On lacunae in the spectrum of the three-dimensional periodic Schrödinger operator with a magnetic field”, Russian Math. Surveys, 50:1 (1995), 198–199  crossref  isi
    13. О. К. Шейнман, “Модули со старшим весом для аффинных алгебр Ли на римановых поверхностях”, Функц. анализ и его прил., 29:1 (1995), 56–71  mathnet  mathscinet  zmath; O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 29:1 (1995), 44–55  crossref  isi
    14. В. А. Гейлер, В. А. Маргулис, “Решения уравнения Шредингера с магнитным полем, сохраняющиеся при точечных возмущениях”, Матем. заметки, 60:5 (1996), 768–773  mathnet  crossref  mathscinet  zmath; V. A. Geiler, V. A. Margulis, “Point perturbation-invariant solutions of the Schrödinger equation with a magnetic field”, Math. Notes, 60:5 (1996), 575–580  crossref  isi
    15. И. А. Тайманов, “Секущие абелевых многообразий, тэта-функции и солитонные уравнения”, УМН, 52:1(313) (1997), 149–224  mathnet  crossref  mathscinet  zmath  adsnasa; I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218  crossref  isi  elib
    16. С. П. Новиков, И. А. Дынников, “Дискретные спектральные симметрии маломерных дифференциальных операторов и разностных операторов на правильных решетках и двумерных многообразиях”, УМН, 52:5(317) (1997), 175–234  mathnet  crossref  mathscinet  zmath  adsnasa; S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116  crossref  isi
    17. О. И. Мохов, “Симплектические и пуассоновы структуры на пространствах петель гладких многообразий и интегрируемые системы”, УМН, 53:3(321) (1998), 85–192  mathnet  crossref  mathscinet  zmath  adsnasa  elib; O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  crossref  isi  elib
    18. К. В. Панкрашкин, “Локальность квадратичных форм для точечных возмущений операторов Шредингера”, Матем. заметки, 70:3 (2001), 425–433  mathnet  crossref  mathscinet  zmath; K. V. Pankrashin, “Locality of Quadratic Forms for Point Perturbations of Schrödinger Operators”, Math. Notes, 70:3 (2001), 384–391  crossref  isi  elib
    19. Й. Брюнинг, С. Ю. Доброхотов, К. В. Панкрашкин, “Асимптотика нижних зон Ландау в сильном магнитном поле”, ТМФ, 131:2 (2002), 304–331  mathnet  crossref  mathscinet  zmath; J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashin, “The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field”, Theoret. and Math. Phys., 131:2 (2002), 704–728  crossref  isi
    20. V. A. Vassiliev, “Spaces of Hermitian operators with simple spectra and their finite-order cohomology”, Mosc. Math. J., 3:3 (2003), 1145–1165  mathnet  mathscinet  zmath
    21. И. А. Тайманов, “О двумерных конечнозонных потенциальных операторах Шредингера и Дирака с особыми спектральными кривыми”, Сиб. матем. журн., 44:4 (2003), 870–882  mathnet  mathscinet  zmath; I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Siberian Math. J., 44:4 (2003), 686–694  crossref  isi  elib
    22. П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нулевом уровне чисто магнитного двумерного нерелятивистского оператора Паули для частиц со спином $1/2$”, ТМФ, 164:3 (2010), 333–353  mathnet  crossref  adsnasa; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127  crossref  isi
    23. П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули”, УМН, 70:2(422) (2015), 109–140  mathnet  crossref  mathscinet  adsnasa  elib; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329  crossref  isi  elib
  • Просмотров:
    Эта страница:369
    Полный текст:175

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018