|
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1984, Volume 24, Pages 81–180
(Mi intd72)
|
|
|
|
This article is cited in 54 scientific papers (total in 54 papers)
Lie algebras and equations of Korteweg–de Vries type
V. G. Drinfeld, V. V. Sokolov
Abstract:
The survey contains a description of the connection between the infinite-dimensional Lie algebras of Kats–Moody and systems of differential equations generalizing the Korteweg–de Vries and sine-Gordon equations and integrable by the method of the inverse scattering problem. A survey of the theory of Kats–Moody algebras is also given.
Full text:
PDF file (5234 kB)
English version:
Journal of Soviet Mathematics, 1985, 30:2, 1975–2036
Bibliographic databases:
UDC:
515.168.3+517.957
Citation:
V. G. Drinfeld, V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 24, VINITI, Moscow, 1984, 81–180; J. Soviet Math., 30:2 (1985), 1975–2036
Citation in format AMSBIB
\Bibitem{DriSok84}
\by V.~G.~Drinfeld, V.~V.~Sokolov
\paper Lie algebras and equations of Korteweg--de~Vries type
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1984
\vol 24
\pages 81--180
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd72}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=760998}
\zmath{https://zbmath.org/?q=an:0578.58040|0558.58027}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 30
\issue 2
\pages 1975--2036
\crossref{https://doi.org/10.1007/BF02105860}
Linking options:
http://mi.mathnet.ru/eng/intd72 http://mi.mathnet.ru/eng/intd/v24/p81
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. O. Radul, “A description of Poisson brackets on a space of nonlocal functionals”, Funct. Anal. Appl., 19:2 (1985), 153–156
-
T. G. Khovanova, “Structure of Lie superalgebras on eigenfunctions and jets of the kernel of the resolvent near the diagonal for an $n$th-order differential operator”, Funct. Anal. Appl., 20:2 (1986), 162–164
-
T. G. Khovanova, “The Gel'fand–Dikii Lie Algebras and the Virasoro algebra”, Funct. Anal. Appl., 20:4 (1986), 332–334
-
A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63
-
P. I. Holod, “Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field”, Theoret. and Math. Phys., 70:1 (1987), 11–19
-
D. R. Lebedev, A. O. Radul, “Periodic intermediate long wave equation: The undressing method”, Theoret. and Math. Phys., 70:2 (1987), 140–147
-
T. G. Khovanova, “Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory”, Theoret. and Math. Phys., 72:2 (1987), 899–904
-
V. V. Sokolov, “On the symmetries of evolution equations”, Russian Math. Surveys, 43:5 (1988), 165–204
-
S. L. Luk'yanov, “Quantization of the Gel'fand?Dikii brackets”, Funct. Anal. Appl., 22:4 (1988), 255–262
-
B. A. Khesin, “Invariants of Hamiltonian KdV-structures”, Russian Math. Surveys, 45:1 (1990), 209–210
-
V. Yu. Ovsienko, “Contact analogues of the Virasoro algebra”, Funct. Anal. Appl., 24:4 (1990), 306–314
-
V. Yu. Ovsienko, B. A. Khesin, “Symplectic leaves of the Gel'fand–Dikii brackets and homotopy classes of nondegenerate curves”, Funct. Anal. Appl., 24:1 (1990), 33–40
-
O. S. Kravchenko, B. A. Khesin, “A central extension of the algebra of pseudodifferential symbols”, Funct. Anal. Appl., 25:2 (1991), 152–154
-
S. I. Svinolupov, “Jordan algebras and generalized Korteweg–de Vries equations”, Theoret. and Math. Phys., 87:3 (1991), 611–620
-
S. I. Svinolupov, “Jordan Algebras and Integrable Systems”, Funct. Anal. Appl., 27:4 (1993), 257–265
-
Ya. P. Pugay, “Lattice $W$ algebras and quantum groups”, Theoret. and Math. Phys., 100:1 (1994), 900–911
-
E. I. Bogdanov, “Spatially distributed classical Lagrangian mechanics”, Theoret. and Math. Phys., 101:3 (1994), 1419–1421
-
I. M. Krichever, “General Rational Reductions of the KP Hierarchy and Their Symmetries”, Funct. Anal. Appl., 29:2 (1995), 75–80
-
V. I. Vakulenko, “Solution of Virasoro constraints for DKP hierarhy”, Theoret. and Math. Phys., 107:1 (1996), 435–440
-
I. Z. Golubchik, V. V. Sokolov, “Integrable Systems Generated by a Constant Solution of the Yang–Baxter Equation”, Funct. Anal. Appl., 30:4 (1996), 275–277
-
I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103
-
I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124:1 (2000), 909–917
-
I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298
-
A. A. Bormisov, F. Kh. Mukminov, “Symmetries of Systems of the Hyperbolic Riccati Type”, Theoret. and Math. Phys., 127:1 (2001), 446–459
-
I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type”, Funct. Anal. Appl., 36:3 (2002), 172–181
-
A. V. Kiselev, “Methods of geometry of differential equations in analysis of integrable models of field theory”, J. Math. Sci., 136:6 (2006), 4295–4377
-
E. V. Frenkel, “Opers on the projective line, flag manifolds and Bethe ansatz”, Mosc. Math. J., 4:3 (2004), 655–705
-
A. V. Ovchinnikov, “On the solution of Toda systems associated with simple Lie algebras”, J. Math. Sci., 141:1 (2007), 1031–1040
-
O. V. Il'in, “On $W$-geometry of Toda systems”, J. Math. Sci., 141:1 (2007), 1041–1047
-
T. V. Skrypnik, “Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
-
A. G. Meshkov, “On symmetry classification of third order evolutionary systems of divergent type”, J. Math. Sci., 151:4 (2008), 3167–3181
-
Taras V. Skrypnyk, “Quasigraded Lie Algebras and Modified Toda Field Equations”, SIGMA, 2 (2006), 043, 14 pp.
-
A. V. Kiselev, “Algebraic properties of Gardner's deformations for integrable systems”, Theoret. and Math. Phys., 152:1 (2007), 963–976
-
V. A. Andreev, “System of equations for stimulated combination scattering
and the related double periodic $A_n^{(1)}$ Toda chains”, Theoret. and Math. Phys., 156:1 (2008), 1020–1027
-
A. G. Meshkov, “Nonlocal symmetries in two-field divergent evolutionary systems”, Theoret. and Math. Phys., 156:3 (2008), 1268–1279
-
Anatoly G.G. Meshkov, Maxim Ju. Balakhnev, “Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions”, SIGMA, 4 (2008), 018, 29 pp.
-
Gloria Marí Beffa, “Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems”, SIGMA, 4 (2008), 034, 23 pp.
-
A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162
-
V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces”, Theoret. and Math. Phys., 167:3 (2011), 740–750
-
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “New integral representations of Whittaker functions for classical Lie groups”, Russian Math. Surveys, 67:1 (2012), 1–92
-
V. S. Gerdjikov, “Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators”, Theoret. and Math. Phys., 172:2 (2012), 1085–1096
-
A. V. Domrin, “On holomorphic solutions of equations of Korteweg–de Vries type”, Trans. Moscow Math. Soc., 73 (2012), 193–206
-
A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154
-
I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, Theoret. and Math. Phys., 177:3 (2013), 1655–1679
-
Johan van de Leur, “The $(n,1)$-Reduced DKP Hierarchy, the String Equation and $W$ Constraints”, SIGMA, 10 (2014), 007, 19 pp.
-
R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theoret. and Math. Phys., 180:1 (2014), 765–780
-
A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817
-
O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156
-
B. L. Feigin, “Integrable systems, shuffle algebras, and Bethe equations”, Trans. Moscow Math. Soc., 77 (2016), 203–246
-
I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810
-
V. S. Gerdjikov, “Kulish–Sklyanin-type models: Integrability and reductions”, Theoret. and Math. Phys., 192:2 (2017), 1097–1114
-
G. G. Grahovski, A. J. Mustafa, H. Susanto, “Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces”, Theoret. and Math. Phys., 197:1 (2018), 1430–1450
-
V. S. Gerdjikov, A. A. Stefanov, I. D. Iliev, G. P. Boyadjiev, A. O. Smirnov, V. B. Matveev, M. V. Pavlov, “Recursion operators and hierarchies of $mKdV$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$”, Theoret. and Math. Phys., 204:3 (2020), 1110–1129
-
I. V. Volovich, “On Integrability of Dynamical Systems”, Proc. Steklov Inst. Math., 310 (2020), 70–77
|
Number of views: |
This page: | 2469 | Full text: | 1375 |
|