|
|
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1985, Volume 4, Pages 141–176
(Mi intf35)
|
|
|
|
This article is cited in 19 scientific papers (total in 19 papers)
Geometric quantization
A. A. Kirillov
Full text:
PDF file (5075 kB)
Bibliographic databases:
UDC:
514.8+517.986
Citation:
A. A. Kirillov, “Geometric quantization”, Dynamical systems – 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 4, VINITI, Moscow, 1985, 141–176
Citation in format AMSBIB
\Bibitem{Kir85}
\by A.~A.~Kirillov
\paper Geometric quantization
\inbook Dynamical systems~--~4
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr.
\yr 1985
\vol 4
\pages 141--176
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intf35}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=842909}
Linking options:
http://mi.mathnet.ru/eng/intf35 http://mi.mathnet.ru/eng/intf/v4/p141
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Kirillov, D. V. Yur'ev, “Kähler geometry of the infinite-dimensional homogeneous manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funct. Anal. Appl., 20:4 (1986), 322–324
-
D. V. Yur'ev, “Non-Euclidean geometry of mirrors and prequantization on the homogeneous Kähler manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Russian Math. Surveys, 43:2 (1988), 187–188
-
A. D. Popov, “Geometric quantization of strings and reparametrization invariance”, Theoret. and Math. Phys., 83:3 (1990), 608–619
-
A. D. Popov, “Generalized twistors and geometric quantization”, Theoret. and Math. Phys., 87:1 (1991), 331–344
-
E. I. Bogdanov, “Quantization of classical lagrangian mechanics”, Theoret. and Math. Phys., 91:3 (1992), 629–633
-
V. Yu. Ovsienko, C. Roger, “Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields”, Russian Math. Surveys, 47:6 (1992), 135–191
-
S. A. Bychkov, D. V. Yur'ev, “Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory”, Theoret. and Math. Phys., 97:3 (1993), 1333–1339
-
M. V. Karasev, M. B. Kozlov, “Representations of Compact Semisimple Lie Algebras over Lagrangian Submanifolds”, Funct. Anal. Appl., 28:4 (1994), 238–246
-
G. E. Arutyunov, “Representations of the compact quantum group $SU_q(2)$ and geometrical quantization”, Theoret. and Math. Phys., 100:2 (1994), 921–927
-
E. I. Bogdanov, “Spatially distributed classical Lagrangian mechanics”, Theoret. and Math. Phys., 101:3 (1994), 1419–1421
-
A. N. Tyurin, “On Bohr–Sommerfeld bases”, Izv. Math., 64:5 (2000), 1033–1064
-
A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467
-
N. A. Tyurin, “The correspondence principle in Abelian Lagrangian geometry”, Izv. Math., 65:4 (2001), 823–834
-
M. V. Karasev, E. M. Novikova, “Coherent Transforms and Irreducible Representations Corresponding to Complex Structures on a Cylinder and on a Torus”, Math. Notes, 70:6 (2001), 779–797
-
A. G. Sergeev, “Geometricheskoe kvantovanie prostranstv petel”, Sovr. probl. matem., 13, MIAN, M., 2009, 3–294
-
Thomas Leuther, Fabian Radoux, “Natural and Projectively Invariant Quantizations on Supermanifolds”, SIGMA, 7 (2011), 034, 12 pp.
-
V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. Math., 78:4 (2014), 744–757
-
A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762
-
D. B. Zotev, “Predkvantovanie po Kostantu simplekticheskikh mnogoobrazii
s kontaktnymi osobennostyami”, Matem. zametki, 105:6 (2019), 857–878
|
| Number of views: |
| This page: | 2184 | | Full text: | 1047 |
|