RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1985, Volume 1, Pages 151–155 (Mi intf4)  

This article is cited in 16 scientific papers (total in 16 papers)

Smooth dynamical systems: Preface

D. V. Anosov


Full text: PDF file (803 kB)

Bibliographic databases:
UDC: 517.91/517.93

Citation: D. V. Anosov, “Smooth dynamical systems: Preface”, Dynamical systems – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1, VINITI, Moscow, 1985, 151–155

Citation in format AMSBIB
\Bibitem{Ano85}
\by D.~V.~Anosov
\paper Smooth dynamical systems: Preface
\inbook Dynamical systems~--~1
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr.
\yr 1985
\vol 1
\pages 151--155
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intf4}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=823490}
\zmath{https://zbmath.org/?q=an:0605.58001}


Linking options:
  • http://mi.mathnet.ru/eng/intf4
  • http://mi.mathnet.ru/eng/intf/v1/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ya. L. Umanskii, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. V. Bolsinov, “Smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. The case of systems with planar atoms”, Russian Math. Surveys, 49:3 (1994), 181–182  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465  mathnet  crossref  mathscinet  zmath  isi
    4. A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 21–63  mathnet  crossref  mathscinet  zmath  isi
    5. S. Kh. Aranson, E. V. Zhuzhoma, “On the structure of quasiminimal sets of foliations on surfaces”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 397–424  mathnet  crossref  mathscinet  zmath  isi
    6. A. V. Bolsinov, A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160  mathnet  crossref  mathscinet  zmath  isi
    7. A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. Math., 59:1 (1995), 63–100  mathnet  crossref  mathscinet  zmath  isi
    8. S. Kh. Aranson, V. Z. Grines, E. V. Zhuzhoma, “On the geometry and topology of flows and foliations on surfaces and the Anosov problem”, Sb. Math., 186:8 (1995), 1107–1146  mathnet  crossref  mathscinet  zmath  isi
    9. V. Y. Kaloshin, “Prevalence in the Space of Finitely Smooth Maps”, Funct. Anal. Appl., 31:2 (1997), 95–99  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. D. V. Turaev, L. P. Shilnikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. D. V. Anosov, “Flows on Closed Surfaces and Related Geometrical Questions”, Proc. Steklov Inst. Math., 236 (2002), 12–18  mathnet  mathscinet  zmath
    12. R. M. Fedorov, “Upper bounds of the number of orbital topological types of polynomial vector fields on the plane “modulo limit cycles””, Russian Math. Surveys, 59:3 (2004), 569–570  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. Yu. A. Grishina, A. A. Davydov, “Structural Stability of Simplest Dynamical Inequalities”, Proc. Steklov Inst. Math., 256 (2007), 80–91  mathnet  crossref  mathscinet  zmath  elib  elib
    14. S. V. Gonchenko, A. S. Gonchenko, M. I. Malkin, “O klassifikatsii klassicheskikh i poluorientiruemykh podkov v terminakh granichnykh tochek”, Nelineinaya dinam., 6:3 (2010), 549–566  mathnet  elib
    15. L. I. Danilov, “Rekurrentnye i pochti rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya. II”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 3–21  mathnet
    16. L. I. Danilov, “Ravnomernaya approksimatsiya rekurrentnykh i pochti rekurrentnykh funktsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 36–54  mathnet
  • Number of views:
    This page:959
    Full text:511

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020