RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Probl. Geom. Tr. Geom. Sem.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Probl. Geom., 1987, Volume 19, Pages 3–22 (Mi intg165)  

This article is cited in 8 scientific papers (total in 8 papers)

Jet bundles as manifolds over algebras

V. V. Shurygin


Full text: PDF file (1127 kB)

English version:
Journal of Soviet Mathematics, 1989, 44:2, 85–98

Bibliographic databases:

UDC: 514.763

Citation: V. V. Shurygin, “Jet bundles as manifolds over algebras”, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 19, VINITI, Moscow, 1987, 3–22; J. Soviet Math., 44:2 (1989), 85–98

Citation in format AMSBIB
\Bibitem{Shu87}
\by V.~V.~Shurygin
\paper Jet bundles as manifolds over algebras
\serial Itogi Nauki i Tekhniki. Ser. Probl. Geom.
\yr 1987
\vol 19
\pages 3--22
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intg165}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=933562}
\zmath{https://zbmath.org/?q=an:0721.53064}
\transl
\jour J. Soviet Math.
\yr 1989
\vol 44
\issue 2
\pages 85--98
\crossref{https://doi.org/10.1007/BF01098650}


Linking options:
  • http://mi.mathnet.ru/eng/intg165
  • http://mi.mathnet.ru/eng/intg/v19/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Shurygin, “Manifolds over algebras and their application to the geometry of jet bundles”, Russian Math. Surveys, 48:2 (1993), 75–104  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. V. Shurygin, “Ehresmann connection for the canonical foliation on a manifold over a local algebra”, Math. Notes, 59:2 (1996), 213–218  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. V. Vishnevskii, “A manifold with a pair of commutative semitangent structures”, Russian Math. (Iz. VUZ), 42:6 (1998), 16–23  mathnet  mathscinet
    4. T. I. Gaisin, “On the complex of basic forms of a foliation”, Russian Math. (Iz. VUZ), 44:7 (2000), 70–72  mathnet  mathscinet  zmath
    5. V. V. Shurygin (Jr.), “On the structure of complete varieties over Weil algebras”, Russian Math. (Iz. VUZ), 47:11 (2003), 84–93  mathnet  mathscinet  zmath  elib
    6. V. V. Shurygin (Jr.), “Radiance obstructions for smooth manifolds over Weil algebras”, Russian Math. (Iz. VUZ), 49:5 (2005), 67–79  mathnet  mathscinet  zmath
    7. T. I. Gaisin, “To the question about the maximum principle for manifolds over local algebras”, Siberian Math. J., 46:1 (2005), 62–70  mathnet  crossref  mathscinet  zmath  isi
    8. S. Azarmi, “Foliations associated with the structure of a manifold over a Grassman algebra of even degree exterior forms”, Russian Math. (Iz. VUZ), 56:1 (2012), 76–78  mathnet  crossref  mathscinet
  • Number of views:
    This page:269
    Full text:128

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019