RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2013, Volume 125, Pages 3–251 (Mi into147)  

This article is cited in 9 scientific papers (total in 9 papers)

Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics

Abstract: This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional rigid bodies under the action of a nonconservative force field. We review both new results and results obtained earlier. Problems examined are described by dynamical systems with so-called variable dissipation with zero mean.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00020_


Full text: PDF file (1333 kB)

English version:
Journal of Mathematical Sciences (New York), 2015, 204:4, 379–530

Document Type: Article
UDC: 517.9+531.01+531.552

Citation: M. V. Shamolin, “Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields”, Dynamical systems, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 125, VINITI, Moscow, 2013, 3–251; J. Math. Sci. (N. Y.), 204:4 (2015), 379–530

Citation in format AMSBIB
\Bibitem{Sha13}
\by M.~V.~Shamolin
\paper Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
\inbook Dynamical systems
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2013
\vol 125
\pages 3--251
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into147}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 204
\issue 4
\pages 379--530
\crossref{https://doi.org/10.1007/s10958-014-2209-0}


Linking options:
  • http://mi.mathnet.ru/eng/into147
  • http://mi.mathnet.ru/eng/into/v125/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Andreev, M. V. Shamolin, “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 109–115  mathnet
    2. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika na ploskosti”, Vestn. SamGU. Estestvennonauchn. ser., 2015, no. 10(132), 91–113  mathnet  elib
    3. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v trekhmernom prostranstve”, Vestn. SamU. Estestvennonauchn. ser., 2016, no. 3-4, 75–97  mathnet  elib
    4. M. V. Shamolin, “Integrable systems in dynamics on a tangent foliation to a sphere”, Moscow University Mechanics Bulletin, 71:2 (2016), 27–32  mathnet  crossref  isi  elib
    5. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v chetyrekhmernom prostranstve”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 1, 41–58  mathnet  elib
    6. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 1. Dinamicheskie sistemy”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 3, 41–64  mathnet  crossref  elib
    7. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 2. Nezavisimost polya sil ot tenzora uglovoi skorosti”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 4, 40–67  mathnet  crossref  elib
    8. M. V. Shamolin, “A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere”, Moscow University Mechanics Bulletin, 73:3 (2018), 51–59  mathnet  crossref  isi
    9. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 3. Zavisimost polya sil ot tenzora uglovoi skorosti”, Vestn. SamU. Estestvennonauchn. ser., 24:2 (2018), 33–54  mathnet  crossref  elib
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:111
    Full text:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019