RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2017, Volume 132, Pages 81–85 (Mi into171)  

This article is cited in 3 scientific papers (total in 3 papers)

Problem of group pursuit in linear recurrent differential games

N. N. Petrov, N. A. Solov'eva

Udmurt State University, Mathematical Department

Abstract: We obtain sufficient conditions of the solvability of the group pursuit problem for one or several evaders in recurrent differential games with equal opportunities of all players.

Keywords: differential game, pursuer, evader, recurrent function

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00346_
Ministry of Education and Science of the Russian Federation 2003


Full text: PDF file (264 kB)

English version:
Journal of Mathematical Sciences (New York), 2018, 230:5, 732–736

Bibliographic databases:

UDC: 517.978.4
MSC: 49N75, 91A06

Citation: N. N. Petrov, N. A. Solov'eva, “Problem of group pursuit in linear recurrent differential games”, Proceedings of International Symposium Differential Equations2016, Perm, May 17-18, 2016, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 132, VINITI, Moscow, 2017, 81–85; J. Math. Sci. (N. Y.), 230:5 (2018), 732–736

Citation in format AMSBIB
\Bibitem{PetSol17}
\by N.~N.~Petrov, N.~A.~Solov'eva
\paper Problem of group pursuit in linear recurrent differential games
\inbook Proceedings of International Symposium Differential Equations2016, Perm, May 17-18, 2016
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 132
\pages 81--85
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into171}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3801391}
\zmath{https://zbmath.org/?q=an:1390.49052}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 230
\issue 5
\pages 732--736
\crossref{https://doi.org/10.1007/s10958-018-3779-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044445031}


Linking options:
  • http://mi.mathnet.ru/eng/into171
  • http://mi.mathnet.ru/eng/into/v132/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Petrov, A. Ya. Narmanov, “Mnogokratnaya poimka zadannogo chisla ubegayuschikh v zadache prostogo presledovaniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 193–198  mathnet  crossref  elib
    2. A. I. Machtakova, “Presledovanie zhestko skoordinirovannykh ubegayuschikh v lineinoi zadache s drobnymi proizvodnymi i prostoi matritsei”, Izv. IMI UdGU, 54 (2019), 45–54  mathnet  crossref  elib
    3. N. N. Petrov, A. Ya. Narmanov, “Mnogokratnaya poimka zadannogo chisla ubegayuschikh v zadache s drobnymi proizvodnymi i prostoi matritsei”, Tr. IMM UrO RAN, 25, no. 3, 2019, 188–199  mathnet  crossref  elib
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:120
    Full text:39
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020