RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2017, Volume 138, Pages 3–10 (Mi into210)  

Algebraic methods of the study of quantum information transfer channels

G. G. Amosovabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Saint Petersburg State University
c Moscow Institute of Physics and Technology

Abstract: Kraus representation of quantum information transfer channels is widely used in practice. We present examples of Kraus decompositions for channels that possess the covariance property with respect to the maximal commutative group of unitary operators. We show that in some problems (for example, the problem on the estimate of the minimal output entropy of the channel), the choice of a Kraus representation with nonminimal number of Kraus operators is relevant. We also present certain algebraic properties of noncommutative operator graphs generated by Kraus operators for the case of quantum channels that demonstrate the superactivation phenomenon.

Keywords: quantum channel, Kraus decomposition, minimal output entropy, noncommutative operator graph, quantum channel capacity with zero error.

Full text: PDF file (195 kB)

English version:
Journal of Mathematical Sciences, 2019, 241:2, 109–116

Bibliographic databases:

UDC: 519.722, 519.724, 517.983
MSC: 94A17, 94A40, 47C05

Citation: G. G. Amosov, “Algebraic methods of the study of quantum information transfer channels”, Quantum computing, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 138, VINITI, Moscow, 2017, 3–10; Journal of Mathematical Sciences, 241:2 (2019), 109–116

Citation in format AMSBIB
\Bibitem{Amo17}
\by G.~G.~Amosov
\paper Algebraic methods of the study of quantum information transfer channels
\inbook Quantum computing
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 138
\pages 3--10
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into210}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3801247}
\zmath{https://zbmath.org/?q=an:07123786}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 2
\pages 109--116
\crossref{https://doi.org/10.1007/s10958-019-04411-w}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069916660}


Linking options:
  • http://mi.mathnet.ru/eng/into210
  • http://mi.mathnet.ru/eng/into/v138/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:234
    Full text:58
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020