Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2017, том 140, страницы 88–118 (Mi into237)  

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Случайные блуждания и меры на гильбертовом пространстве, инвариантные относительно сдвигов и поворотов

В. Ж. Сакбаев

Московский физико-технический институт

Аннотация: Изучаются случайные блуждания в гильбертовом пространстве $H$ и представления с их помощью решений задач Коши для дифференциальных уравнений, начальными условиями которых являются числовые функции на гильбертовом пространстве $H$. Приведены примеры таких представлений решений различных эволюционных уравнений в случае конечномерного пространства $H$. Для реализации таких представлений в бесконечномерном гильбертовом пространстве исследуются меры на гильбертовом пространстве, инвариантные относительно сдвигов. Согласно теореме А. Вейля не существует меры Лебега на бесконечномерном гильбертовом пространстве. В статье исследован конечно-аддитивный аналог меры Лебега — инвариантная относительно сдвигов и поворотов в гильбертовом пространстве $H$ неотрицательная конечно аддитивная мера $\lambda$, определенная на минимальном кольце подмножеств бесконечномерного гильбертова пространства $H$, содержащем все бесконечномерные прямоугольники, произведения длин сторон которых сходятся абсолютно. Рассмотрены также конечно-аддитивные аналоги меры Лебега на пространствах $l_{p}$, $1\leq p\leq \infty$. Определено гильбертово пространство $\mathcal H$ комплекснозначных функций на гильбертовом пространстве $H$, квадратично интегрируемых по инвариантной относительно сдвигов мере $\lambda $. Получены представления решений задачи Коши для уравнения диффузии в пространстве $H$ и уравнения Шредингера с координатным пространством $H$ с помощью итераций математических ожиданий операторов случайного сдвига в гильбертовом пространстве $\mathcal H$.

Ключевые слова: конечно-аддитивная мера, инвариантная мера на группе, случайное блуждание, уравнение диффузии, задача Коши, теорема Чернова

Финансовая поддержка Номер гранта
Российский научный фонд 14-11-00687
Работа выполнена в Математическом институте им. В. А. Стеклова РАН при поддержке Российского научного фонда (проект № 14-11-00687).


Полный текст: PDF файл (374 kB)

Англоязычная версия:
Journal of Mathematical Sciences, 2019, 241:4, 469–500

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.982, 517.983
MSC: 28C20, 81Q05, 47D08

Образец цитирования: В. Ж. Сакбаев, “Случайные блуждания и меры на гильбертовом пространстве, инвариантные относительно сдвигов и поворотов”, Дифференциальные уравнения. Математическая физика, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 140, ВИНИТИ РАН, М., 2017, 88–118; Journal of Mathematical Sciences, 241:4 (2019), 469–500

Цитирование в формате AMSBIB
\RBibitem{Sak17}
\by В.~Ж.~Сакбаев
\paper Случайные блуждания и меры на гильбертовом пространстве, инвариантные относительно сдвигов и поворотов
\inbook Дифференциальные уравнения. Математическая физика
\serial Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.
\yr 2017
\vol 140
\pages 88--118
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into237}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3799898}
\zmath{https://zbmath.org/?q=an:1426.28027}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 469--500
\crossref{https://doi.org/10.1007/s10958-019-04438-z}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/into237
  • http://mi.mathnet.ru/rus/into/v140/p88

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. V. Zh. Sakbaev, D. V. Zavadsky, “Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks”, Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 160, № 2, Изд-во Казанского ун-та, Казань, 2018, 384–391  mathnet
    2. В. Ж. Сакбаев, “Полугруппы преобразований пространства функций, квадратично интегрируемых по трансляционно инвариантной мере на банаховом пространстве”, Квантовая вероятность, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 151, ВИНИТИ РАН, М., 2018, 73–90  mathnet  mathscinet
    3. Д. В. Завадский, В. Ж. Сакбаев, “Диффузия на гильбертовом пространстве, снабженном трансляционно и ротационно инвариантной мерой”, Математическая физика и приложения, Сборник статей. К 95-летию со дня рождения академика Василия Сергеевича Владимирова, Труды МИАН, 306, МИАН, М., 2019, 112–130  mathnet  crossref  mathscinet; D. V. Zavadsky, V. Zh. Sakbaev, “Diffusion on a Hilbert Space Equipped with a Shift- and Rotation-Invariant Measure”, Proc. Steklov Inst. Math., 306 (2019), 102–119  crossref  isi  elib
    4. В. М. Бусовиков, В. Ж. Сакбаев, “Пространства Соболева функций на гильбертовом пространстве с трансляционно инвариантной мерой и аппроксимации полугрупп”, Изв. РАН. Сер. матем., 84:4 (2020), 79–109  mathnet  crossref  mathscinet; V. M. Busovikov, V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups”, Izv. Math., 84:4 (2020), 694–721  crossref  isi  elib
    5. Д. В. Гришин, Я. Ю. Павловский, “Представление решения задачи Коши для одномерного уравнения Шрёдингера с ограниченным гладким потенциалом в виде квазифейнмановских формул”, Изв. РАН. Сер. матем., 85:1 (2021), 27–65  mathnet  crossref  mathscinet; D. V. Grishin, Ya. Yu. Pavlovskiy, “Representation of solutions of the Cauchy problem for a one dimensional Schrödinger equation with a smooth bounded potential by quasi-Feynman formulae”, Izv. Math., 85:1 (2021), 24–60  crossref  isi  elib
    6. В. М. Бусовиков, Д. В. Завадский, В. Ж. Сакбаев, “Квантовые системы с бесконечномерным координатным пространством и преобразование Фурье”, Математика квантовых технологий, Сборник статей, Труды МИАН, 313, МИАН, М., 2021, 33–46  mathnet  crossref; V. M. Busovikov, D. V. Zavadsky, V. Zh. Sakbaev, “Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform”, Proc. Steklov Inst. Math., 313 (2021), 27–40  crossref  isi  elib
  • Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры» Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
    Просмотров:
    Эта страница:338
    Полный текст:126
    Первая стр.:25
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021