RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 144, Pages 39–46 (Mi into270)  

On the Theory of Position Pursuit Differential Games

M. Sh. Mamatova, Kh. Kh. Sobirovb

a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Tashkent University of Information Technology

Abstract: The paper is devoted to the study of the position pursuit problem described by first-order linear differential equations. Sufficient conditions of the possibility of pursuit termination for such controllable systems are obtained. For finding control values of the pursuer at each time point, values of the phase vector at discrete moments of time are allowed to use.

Keywords: pursuer, evader, pursuit control, evasion control, positional control

Full text: PDF file (180 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.977
MSC: Primary 35K25; Secondary 35K70, 35R35

Citation: M. Sh. Mamatov, Kh. Kh. Sobirov, “On the Theory of Position Pursuit Differential Games”, Proceedings of the International Conference Problems of Modern Topology and its Applications, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 144, VINITI, M., 2018, 39–46

Citation in format AMSBIB
\Bibitem{MamSob18}
\by M.~Sh.~Mamatov, Kh.~Kh.~Sobirov
\paper On the Theory of Position Pursuit Differential Games
\inbook Proceedings of the International Conference Problems of Modern Topology and its Applications
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 144
\pages 39--46
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into270}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3829869}


Linking options:
  • http://mi.mathnet.ru/eng/into270
  • http://mi.mathnet.ru/eng/into/v144/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:95
    Full text:18
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020