RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 146, Pages 17–47 (Mi into288)  

On Almost Complex Structures on Six-Dimensional Products of Spheres

N. A. Daurtseva, N. K. Smolentsev

Kemerovo State University

Abstract: In this paper, we discuss almost complex structures on the sphere $S^6$ and on the products of spheres $S^3\times S^3$, $S^1\times S^5$, and $S^2\times S^4$. We prove that all almost complex Cayley structures that naturally appear from their embeddings into the Cayley octave algebra $\mathbb{C}\mathrm{a}$ are nonintegrable. We obtain expressions for the Nijenhuis tensor and the fundamental form $\omega$ for each gauge of the space $\mathbb{C}\mathrm{a}$ and prove the nondegeneracy of the form $d\omega$. We show that through each point of a fiber of the twistor bundle over $S^6$, a one-parameter family of Cayley structures passes. We describe the set of $U(2)\times U(2)$-invariant Hermitian metrics on $S^3\times S^3$ and find estimates of the sectional sectional curvature. We consider the space of left-invariant, almost complex structures on $S^3\times S^3=SU(2)\times SU(2)$ and prove the properties of left-invariant structures that yield the maximal value of the norm of the Nijenhuis tensor on the set of left-invariant, orthogonal, almost complex structures.

Keywords: product of spheres, complex structure, almost complex Cayley structure, octave algebra

Full text: PDF file (414 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 514.76
MSC: 51M15

Citation: N. A. Daurtseva, N. K. Smolentsev, “On Almost Complex Structures on Six-Dimensional Products of Spheres”, Geometry, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 146, VINITI, Moscow, 2018, 17–47

Citation in format AMSBIB
\Bibitem{DauSmo18}
\by N.~A.~Daurtseva, N.~K.~Smolentsev
\paper On Almost Complex Structures on Six-Dimensional Products of Spheres
\inbook Geometry
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 146
\pages 17--47
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3824398}


Linking options:
  • http://mi.mathnet.ru/eng/into288
  • http://mi.mathnet.ru/eng/into/v146/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:161
    Full text:34
    References:2
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020