Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 147, Pages 84–119 (Mi into295)  

Multiple Flag Varieties

E. Yu. Smirnovab

a National Research University Higher School of Economics, Moscow
b Independent University of Moscow

Abstract: This paper is a review of results on multiple flag varieties, i.e., varieties of the form $G/P_1\times…\times G/P_r$. We provide a classification of multiple flag varieties of complexity $0$ and $1$ and results on the combinatorics and geometry of $B$-orbits and their closures in double cominuscule flag varieties. We also discuss questions of finiteness for the number of $G$-orbits and existence of an open $G$-orbits on a multiple flag variety.

Keywords: flag varieties, spherical varieties

Funding Agency Grant Number
Russian Science Foundation 14-11-00414
This work was prepared at the Steklov Institute of Mathematics and was partially supported by the Russian Science Foundation (project No. 14-11-00414).


Full text: PDF file (440 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 512.74
MSC: 14M17, 14M15

Citation: E. Yu. Smirnov, “Multiple Flag Varieties”, Proceedings of the Seminar on algebra and geometry of the Samara University, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 147, VINITI, Moscow, 2018, 84–119

Citation in format AMSBIB
\Bibitem{Smi18}
\by E.~Yu.~Smirnov
\paper Multiple Flag Varieties
\inbook Proceedings of the Seminar on algebra and geometry of the Samara University
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 147
\pages 84--119
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into295}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3824406}


Linking options:
  • http://mi.mathnet.ru/eng/into295
  • http://mi.mathnet.ru/eng/into/v147/p84

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:179
    Full text:48
    References:2
    First page:11

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021