RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 148, Pages 122–129 (Mi into310)  

Lie Jets and Higher-Order Partial Connections

V. V. Shurygin

Kazan (Volga Region) Federal University

Abstract: Higher-order partial connections are studied in the paper. We find conditions under which the Lie jet of the field of a geometric object $\xi$ in the direction of the field of Weil $\mathbb{A}$-velocities $Y$ coincides with the covariant derivative $\nabla_Y\xi$ of this field with respect to some higher-order partial connection.

Keywords: Weil algebra, Weil bundle, partial connection, higher-order connection, Lie derivative, Lie jet

Full text: PDF file (200 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 514.763
MSC: 53C15, 58A20, 58A32

Citation: V. V. Shurygin, “Lie Jets and Higher-Order Partial Connections”, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 148, VINITI, M., 2018, 122–129

Citation in format AMSBIB
\Bibitem{Shu18}
\by V.~V.~Shurygin
\paper Lie Jets and Higher-Order Partial Connections
\inbook Proceedings of the International Conference ``Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,'' Ryazan, September 15--18, 2016
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 148
\pages 122--129
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into310}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3847715}


Linking options:
  • http://mi.mathnet.ru/eng/into310
  • http://mi.mathnet.ru/eng/into/v148/p122

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:110
    Full text:9
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020