RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 150, Pages 110–118 (Mi into332)  

Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics

Abstract: In this paper, we prove the integrability of certain classes of dynamical systems on the tangent bundles of three-dimensional manifolds (systems with three degrees of freedom). Force field considered possess so-called variable dissipation; they are generalizations of fields studied earlier.

Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-00848-a
This work was partially supported by the Russian Foundation for Basic Research (project No. 15-01-00848-a).


Full text: PDF file (175 kB)

Bibliographic databases:

Document Type: Article
UDC: 517.933
MSC: 70G60

Citation: M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 150, VINITI, Moscow, 2018, 110–118

Citation in format AMSBIB
\Bibitem{Sha18}
\by M.~V.~Shamolin
\paper Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 150
\pages 110--118
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into332}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3847623}


Linking options:
  • http://mi.mathnet.ru/eng/into332
  • http://mi.mathnet.ru/eng/into/v150/p110

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:25
    Full text:2
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019