RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, Volume 156, Pages 41–57 (Mi into396)  

On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations

I. V. Frolenkova, E. N. Krigerb

a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
b JSC Information Satellite Systems Reshetnev, Zheleznogorsk, Krasnoyarsk Krai, Russia

Abstract: In this paper, we examine the solvability of a new class of nonclassical direct problems for multidimensional loaded parabolic equations with Cauchy data. We obtain sufficient conditions for the solvability of the problem; the proof is based on the method of weak approximation. By an example, we demonstrate the application of the theorem proved to the study of inverse problems for multidimensional parabolic equations with Cauchy data.

Keywords: parabolic equation, loaded equation, Cauchy problem, solvability, method of weak approximation

Full text: PDF file (250 kB)
References: PDF file   HTML file
UDC: 517.9
MSC: 35K15, 35B45, 35B65

Citation: I. V. Frolenkov, E. N. Kriger, “On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations”, Mathematical Analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 156, VINITI, Moscow, 2018, 41–57

Citation in format AMSBIB
\Bibitem{FroKri18}
\by I.~V.~Frolenkov, E.~N.~Kriger
\paper On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations
\inbook Mathematical Analysis
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 156
\pages 41--57
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into396}


Linking options:
  • http://mi.mathnet.ru/eng/into396
  • http://mi.mathnet.ru/eng/into/v156/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:54
    Full text:16
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020