RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2019, Volume 159, Pages 3–45 (Mi into414)  

Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers

A. N. Abyzova, T. C. Quynhb, A. A. Tuganbaevcd

a Kazan (Volga Region) Federal University
b The University of Danang
c National Research University "Moscow Power Engineering Institute"
d Lomonosov Moscow State University

Abstract: The paper contains both previously known and new results on automorphism-invariant modules, automorphism-coinvariant modules, and modules that are invariant or coinvariant with respect to idempotent endomorphisms of their hulls and their covers, respectively. The main results are given with proofs.

Keywords: quasi-injective module, quasi-projective module, automorphism-invariant module, automorphism-liftable module, automorphism-coinvariant module, hull, cover

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.1515.2017/4.6
1.12878.2018/12.1
Russian Science Foundation 16-11-10013
The work of A. N. Abyzov was supported by the Ministry of Science and Education of Russian Federation (project No. 1.1515.2017/4.6). The work of T. C. Quynh was supported by by the Ministry of Science and Education of Russian Federation (project No. 1.12878.2018/12.1). The work of A. A. Tuganbaev was supported by the Russian Science Foundation (project No. 16-11-10013).


Full text: PDF file (547 kB)
References: PDF file   HTML file
UDC: 512.55
MSC: 16D40, 16D50, 16W20

Citation: A. N. Abyzov, T. C. Quynh, A. A. Tuganbaev, “Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers”, Algebra, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 159, VINITI, Moscow, 2019, 3–45

Citation in format AMSBIB
\Bibitem{AbyQuyTug19}
\by A.~N.~Abyzov, T.~C.~Quynh, A.~A.~Tuganbaev
\paper Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers
\inbook Algebra
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 159
\pages 3--45
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into414}


Linking options:
  • http://mi.mathnet.ru/eng/into414
  • http://mi.mathnet.ru/eng/into/v159/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:190
    Full text:32
    References:23
    First page:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020