Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2019, Volume 162, Pages 62–79 (Mi into442)  

Interpolation by series of exponential functions whose exponents are condensed in a certain direction

S. G. Merzlyakov, S. V. Popenov

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa

Abstract: For complex interpolation nodes, we study the problem of interpolation by series of exponential functions whose exponents form a set, which is condensed at infinity in a certain direction. We obtain a criterion for all sets of nodes from a special class. For arbitrary sets of nodes, we obtain a necessary condition for the solvability of a more general problem of interpolation by functions that can be represented as Radon integrals of an exponential function over a set of exponents. The paper also contains well-known results on interpolation, which, in particular, allow studying the multipoint holomorphic Vallée Poussin problem for convolution operators.

Keywords: series of exponential functions, exponent of exponential function, limit direction of exponents, interpolation, convolution operator, Cauchy problem, Vallée Poussin problem, Radon integral

Full text: PDF file (342 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.98
MSC: 30E05, 30D05

Citation: S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponential functions whose exponents are condensed in a certain direction”, Complex Analysis.Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 62–79

Citation in format AMSBIB
\Bibitem{MerPop19}
\by S.~G.~Merzlyakov, S.~V.~Popenov
\paper Interpolation by series of exponential functions whose exponents are condensed in a certain direction
\inbook Complex Analysis.Mathematical Physics
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 162
\pages 62--79
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into442}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3981818}


Linking options:
  • http://mi.mathnet.ru/eng/into442
  • http://mi.mathnet.ru/eng/into/v162/p62

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:107
    Full text:64
    References:8
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022