RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2019, том 162, страницы 80–84 (Mi into443)  

Симметрии одной периодической цепочки

М. Н. Попцова

Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, г. Уфа

Аннотация: Рассматривается периодическое замыкание нелинейной интегрируемой двумеризованной трехточечной цепочки. Интегрируемость понимается в том смысле, что цепочка допускает широкий класс редукций, представляющих собой нелинейные гиперболические системы уравнений с двумя независимыми переменными, интегрируемые по Дарбу. В данной работе рассматривается система, полученная, как периодическое замыкание периода 2 одной из двумеризованных трехточечных цепочек, найденных в рамках такого подхода. Для этой системы уравнений построена высшая симметрия второго порядка, зависящая от двух произвольных функций.

Ключевые слова: двумеризованная интегрируемая цепочка, периодическая цепочка, симметрия, система, интегрируемая по Дарбу, характеристическое кольцо Ли

Полный текст: PDF файл (165 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 517.9
MSC: 35L51, 39A14

Образец цитирования: М. Н. Попцова, “Симметрии одной периодической цепочки”, Комплексный анализ. Математическая физика, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 162, ВИНИТИ РАН, М., 2019, 80–84

Цитирование в формате AMSBIB
\RBibitem{Pop19}
\by М.~Н.~Попцова
\paper Симметрии одной периодической цепочки
\inbook Комплексный анализ. Математическая физика
\serial Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.
\yr 2019
\vol 162
\pages 80--84
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into443}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/into443
  • http://mi.mathnet.ru/rus/into/v162/p80

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры» Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
    Просмотров:
    Эта страница:8
    Литература:3
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019