RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2019, том 162, страницы 136–150 (Mi into446)  

Инвариантные многообразия интегрируемых уравнений гиперболического типа и их приложения

И. Т. Хабибуллинab, А. Р. Хакимоваb

a Институт математики с вычислительным центром — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, г. Уфа
b Башкирский государственный университет, г. Уфа

Аннотация: В данной статье мы ставим в соответствие данному интегрируемому уравнению с частными производными (или его дискретному или полудискретному аналогу) некоторое инвариантное многообразие. Сначала рассматривается линеаризация уравнения вблизи его произвольного решения $u$. Затем мы строим дифференциальное (соответственно, разностное) уравнение, совместное с линеаризованным уравнением при любом выборе $u$. Это уравнение определяет поверхность, называемую обобщенным инвариантным многообразием. В некотором смысле это многообразие является обобщением симметрии, которая также является решением линеаризованного уравнения. В работе рассматриваются непрерывные и дискретные модели гиперболического типа. Известно, что уравнения такого типа обладают двумя иерархиями симметрий, соответствующих характеристическим направлениям. Доказано, что надлежащим образом выбранное обобщенное инвариантное многообразие позволяет построить операторы рекурсии, порождающие эти симметрии. Неожиданным является тот факт, что оба эти оператора рекурсии связаны с различными параметризациями одного и того же инвариантного многообразия. Следовательно, зная один из операторов рекурсии для интегрируемого уравнения гиперболического типа (не имеющего псевдоконстант), можно найти и второй из них.

Ключевые слова: интегрируемость, пара Лакса, инвариантное многообразие, оператор рекурсии; quad-уравнение

Полный текст: PDF файл (313 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 517.962.9
MSC: 35L10, 39A14

Образец цитирования: И. Т. Хабибуллин, А. Р. Хакимова, “Инвариантные многообразия интегрируемых уравнений гиперболического типа и их приложения”, Комплексный анализ. Математическая физика, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 162, ВИНИТИ РАН, М., 2019, 136–150

Цитирование в формате AMSBIB
\RBibitem{HabKha19}
\by И.~Т.~Хабибуллин, А.~Р.~Хакимова
\paper Инвариантные многообразия интегрируемых уравнений гиперболического типа и их приложения
\inbook Комплексный анализ. Математическая физика
\serial Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз.
\yr 2019
\vol 162
\pages 136--150
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into446}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/into446
  • http://mi.mathnet.ru/rus/into/v162/p136

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры» Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
    Просмотров:
    Эта страница:19
    Литература:6
    Первая стр.:5

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019