RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2020, Volume 174, Pages 70–82 (Mi into569)  

Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability

M. V. Shamolin

Lomonosov Moscow State University

Abstract: This paper is devoted to the study of the relative structural stability (the relative roughness) of dynamical systems considered not on the whole space of dynamical systems, but only on a certain subspace of it. Moreover, the space of deformations of dynamical systems also does not coincide with the whole space of admissible deformations. In particular, we consider dissipative systems of differential equations that arise in the rigid-body dynamics and the theory of oscillations; dissipation in such systems may by positive or negative. We examine the relative roughness of such systems and, under certain conditions, their relative nonroughness of various degrees. We also discuss problems of integrability of these systems in finite combinations of elementray functions.

Keywords: dynamical system, relative roughness, transcendent first integral

DOI: https://doi.org/10.36535/0233-6723-2020-174-70-82

Full text: PDF file (2619 kB)
References: PDF file   HTML file

UDC: 517.933
MSC: 70G60

Citation: M. V. Shamolin, “Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 174, VINITI, Moscow, 2020, 70–82

Citation in format AMSBIB
\Bibitem{Sha20}
\by M.~V.~Shamolin
\paper Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 174
\pages 70--82
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into569}
\crossref{https://doi.org/10.36535/0233-6723-2020-174-70-82}


Linking options:
  • http://mi.mathnet.ru/eng/into569
  • http://mi.mathnet.ru/eng/into/v174/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:18
    Full text:8
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020