Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2020, Volume 181, Pages 22–29 (Mi into654)  

On generalized discrete metric structures

E. Deza

Moscow State Pedagogical University

Abstract: In this paper, we discuss problems related to construction and investigation of cones of semimetrics, quasi-semimetrics (which are oriented analogs of symmetric semimetrics), and $m$-semimetrics (which are multidimensional analogs of two-dimensional semimetrics).

Keywords: distance, semimetric, metric, quasi-semimetric, multidimensional semimetric, cut, multi-cut, cone of generalized discrete metric structures

DOI: https://doi.org/10.36535/0233-6723-2020-181-22-29

Full text: PDF file (191 kB)
References: PDF file   HTML file

UDC: 519.1
MSC: 54E25, 54E35

Citation: E. Deza, “On generalized discrete metric structures”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 181, VINITI, Moscow, 2020, 22–29

Citation in format AMSBIB
\Bibitem{Dez20}
\by E.~Deza
\paper On generalized discrete metric structures
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 181
\pages 22--29
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into654}
\crossref{https://doi.org/10.36535/0233-6723-2020-181-22-29}


Linking options:
  • http://mi.mathnet.ru/eng/into654
  • http://mi.mathnet.ru/eng/into/v181/p22

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory" Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory"
    Number of views:
    This page:40
    Full text:18
    References:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022